首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SiAION Ceramics     
The phase relations in and physical properties of SiAlON ceramics prepared by the hot isostatic pressing technique or by pressureless sintering with a sintering aid are reviewed. The sintering aid used is an AIN and Al2O3 mixture either pure or in combination with Y2O3 and/or various rare-earth oxides. Special attention is paid to the amount and type of phase(s) formed and to how properties such as hardness (HV10), fracture toughness ( K IC), and oxidation resistance vary with the sintering aid used for different types of SiAlON materials, i.e., O'-, almost monophasic α-, pure β-, and mixed (α+β)-SiAION Ceramics.  相似文献   

2.
Silicon nitride (Si3N4) and SiAlONs can be self-toughened through the growth of elongated β-Si3N4/β-SiAlON grains in sintering. α-SiAlONs usually retain an equiaxed grain morphology and have a higher hardness but lower toughness than β-SiAlONs. The present work has demonstrated that elongated alpha-SiAlON grains can also be developed through pressureless sintering. alpha-SiAlONs with high-aspect-ratio grains in the calcium SiAlON system have exhibited significant grain debonding and pull-out effects during fracture, which offers promise for in-situ -toughened α-SiAlON ceramics.  相似文献   

3.
Dense nearly single-phase β'-SiAlON materials (with substitutional level z ∼ 1) have been prepared by hot isostatic pressing and their high-temperature deformation behavior has been investigated using low-frequency damping and torsional creep experiments. Addition of a small fraction of AlN (∼0.5 wt%) to the starting (nominally z = 1) SiAlON powder enabled us to "balance" the excess SiO2 which likely arises from surface contamination of the starting SiAlON powder upon exposure to atmosphere. As a result, a fine-grained β'-SiAlON polycrystal free of residual (glassy) X-phase segregated to grain boundaries could be prepared. This microstructure is in contrast with that found for an "unbalanced" composition prepared from the same raw β'-SiAlON powder but without the corrective AlN addition. In this latter case, residual glass (X-phase), consisting of Al-rich SiO2, was entrapped at multiple grain junctions. The presence of such a low-melting intergranular glass dominates the high-temperature deformation behavior of the dilute SiAlON material, involving marked degradation of creep resistance and significant damping relaxation due to grain-boundary sliding. "Balancing" the SiAlON microstructure with a small addition of AlN enabled us to suppress anelastic relaxation by grain-boundary sliding and to increase the creep resistance of the material by more than 1 order of magnitude.  相似文献   

4.
In the present work, multi-cation-doped (Sr2+–Mg2+) SiAlON ceramics were investigated. MgO and SrO were used in 100:0 and 50:50 molar ratios. The mixture was sintered at 1800° and 1830°C for 1 h in a gas pressure-sintering furnace. The results showed that sintered samples were composed of mainly α- and β-SiAlON phases and small amounts of some Sr-containing phases and SiAlON polytypes. According to Rietveld analysis of X-ray diffraction patterns, Mg is incorporated into the α-SiAlON structure. However, the incorporation of Sr is limited.  相似文献   

5.
β-sialon and Nd2O3-doped α-sialon materials of varying composition were prepared by sintering at 1775° and 1825°C and by glass-encapsulated hot isostatic pressing at 1700°C. Composites were also prepared by adding 2–20 wt% ZrO2 (3 mol% Nd2O3) or 2–20 wt% ZrN to the β-sialon and α-sialon matrix, respectively. Neodymium was found to be a fairly poor α-sialon stabilizer even within the α-phase solid solution area, and addition of ZrN further inhibited the formation of the α-sialon phase. A decrease in Vickers hardness and an increase in toughness with increasing content of ZrO2(Nd2O3) or ZrN were seen in both the HIPed β-sialon/ZrO2(Nd2O3) composites and the HIPed Nd2O3-stabiIized α-sialons with ZrN additions.  相似文献   

6.
Duplex αβ,-sialon ceramics with a minimum volume fraction of residual intergranular glass have been prepared using Dy or Sm as the α-sialon stabilizing element. These microstructures contained high aspect ratio β-sialon grains homogeneously distributed in an α-sialon matrix. A number of the larger α-sialon grains contained dislocations and showed a core/shell structure. Dy gave an α-sialon which was stable over a wide temperature range (1350–1800°C) for long holding times, while the use of Sm resulted in less stable α-sialon structures at medium temperatures (1450°C) and the formation of melilite, R2Si3−xAlxO3+xN4−x, β-sialon, and the 21R sialon polytype during prolonged heating. High α-phase contents gave a very high hardness ( H V10 is approximately 22 GPa) but a comparatively low indentation fracture toughness (around 4.4 MPam1/2). Duplex sialons fabricated from powder mixtures corresponding to an α-to-β sialon ratio of around 50:50 resulted in a sialon material with a favorable combination of high hardness (around 22 GPa) and increased toughness (to around 5.5 MPam1/2).  相似文献   

7.
The microstructure of a pressureless sintered (1605°C, 90 min) O'+β' SiAlON ceramic with CeO2 doping has been investigated. It is duplex in nature, consisting of very large, slablike elongated O' grains (20–30 μm long), and a continuous matrix of small rodlike β' grains (< 1.0 μm in length). Many α-Si3N4 inclusions (0.1–0.5 μm in size) were found in the large O' grains. CeO2-doping and its high doping level as well as the high Al2O3 concentration were thought to be the main reasons for accelerating the reaction between the α-Si3N4 and the Si-Al-O-N liquid to precipitate O'–SiAlON. This caused the supergrowth of O' grains. The rapid growth of O' crystals isolated the remnant α–Si3N4 from the reacting liquid, resulting in a delay in the α→β-Si3N4 transformation. The large O' grains and the α-Si3N4 inclusions have a pronounced effect on the strength degradation of O'+β' ceramics.  相似文献   

8.
Generalized Fluid Flow Model for Ceramic Tape Casting   总被引:1,自引:0,他引:1  
The fluid mechanics associated with the flow of a ceramic slurry during the tape casting process is analyzed in this paper. The rheology of the slurry is described in generalized terms using the Ostwald-de Waele power-law equation, T = m|γ|', where the yield constant, m , and the shear rate exponent, n, are empirical functions of the particle loading in the slurry, the particle shape and size distributions in the slurry, and the slurry temperature. The effects of an imposed pressure gradient due to the height of the slurry in the casting head, as well as those of the drag due to the moving substrate on the slurry flow, are accounted for by modeling the slurry discharge as a generalized planar Couette flow. The model yields an analytical expression for the tape thickness as a function of various slurry and process parameters. The influence of the physical parameters of the slurry and the geometrical dimensions of the casting head on the tape thickness are examined in the context of a commonly used BaTiO, system. It is shown that the various parametric effects may be represented concisely in the form of a nondimensional design plot employing (a) a flow parameter, α, (b) a shrinkage parameter, β, and (c) the rheology exponent, n .  相似文献   

9.
Summary We studied high-molecular-weight α,β-PMA synthesized by polycondensation in order to find possible applications for biomaterials. Its solubility in different solvents, its hydrolysis and its acidity were also examined. The α,β-PMA molecular weight increased markedly up to 20 h and then decreased showing that the molecular weights for synthesized α,β-PMA depends on the reaction time. We prepared high-yield α,β-PMA with a molecular weight of 3600 by direct polycondensation using tin(II) chloride as a catalyst at 130°C for 20 hours and concluded that our method is suitable to synthesize higher molecular weight compounds of α,β-PMA. Received: 20 December 2002/Revised version: 18 February 2003/ Accepted: 22 February 2003 Correspondence to Tetsuto Kajiyama  相似文献   

10.
Carbothermal reduction—nitridation (CRN) of SiO2 is an attractive method to manufacture Si3N4 powders with controlled grain morphology. Moreover, β-SiAlON powders could also be synthesized from either pure powder mixture or some inexpensive raw minerals by CRN and the resulting powders favored the sintering of SiAlON product. However, there have been few works on preparing α-SiAlON powders so far. In this work, Ca α-SiAlON powder was synthesized by CRN of a SiO2—Al2O3—CaCO3 mixture. An unusual morphology of hollow beads 200 to 500 nm in diameter with a great deal of nanosize α-SiAlON particles around 10 to 30 nm in diameter was observed from the resultant Ca α-SiAlON powders, which has not been reported for SiAlON ceramics before.  相似文献   

11.
Dense α-SiAlON ceramics were obtained by pressureless sintering of green compacts prepared using slip casting. The rheological properties of the reaction SiAlON suspension were optimized to achieve a high degree of dispersion with a high solids volume fraction, which resulted in homogeneous and relatively dense green bodies with high sintering ability, which could be densified by pressureless sintering at 1750°C for 2 h. The sintered samples revealed a high degree of uniformity and almost fully dense microstructures that consisted of many small, elongated grains homogeneously dispersed in the fracture surfaces, which had properties comparable with those of other SiAlONs obtained using hot pressing.  相似文献   

12.
SiAlON-Based Ceramics from Filled Preceramic Polymers   总被引:1,自引:0,他引:1  
Commercial polysiloxanes filled with alumina nanoparticles and AlN and Si3N4 micropowders have been used for the preparation of β-SiAlON in nitrogen, at 1450°–1550°C. SiAlON was preceded by intermediate alumino-silicate phases like mullite and sillimanite. Although reduction and nitridation to β-SiAlON finally occurred, the SiAlON yield at high temperatures was lowered by corundum contaminations. The yield was also possibly affected by phase separation in the SiOC glass residue derived from silicones. A composition refinement reduced contamination and provided a promising route for SiAlON from filled preceramic polymers.  相似文献   

13.
β-Si3N4 whisker-reinforced β'SiAlON composites were fabricated by extrusion and densified, using pressureless sintering. Whisker alignment was observed in both the green and sintered microstructures. SEM analysis of polished, sintered samples showed a microstructure consisting of the original β-Si3N4 whiskers in a matrix of fine SiAlON grains. SEM of plasma-etched samples and TEM analysis showed that the whiskers, as a result of grain growth, consisted of two phases, a core and a sheath layer. X-ray mapping and EDS analysis revealed that the core material contained no trace of Al, confirming the presence of original β-Si3N4 whiskers. The composition of the sheath was qualitatively identical to that of the fine β' SiAlON grains in the matrix. The sheath was thus formed by the precipitation of the β'SiAlON during liquid-phase sintering and led to substantial growth of the whiskers. Microdiffraction showed that the β'SiAlON grew epitaxially on the β-Si3N4 whiskers, resulting in a heavily faulted SiAlON layer.  相似文献   

14.
Silicon nitride was fabricated by tape casting of α-Si3N4 powder with 5 wt% Y2O3 and 5 vol% rodlike β-Si3N4 seed particles, followed by tape stacking, hot pressing under 40 MPa, and annealing at 1850°C for 2-66 h under a nitrogen pressure of 0.9 MPa. Silicon nitrides fabricated by this procedure exhibited a highly anisotropic microstructure with large elongated grains (developed from seed particles) uniaxially oriented parallel to the casting direction. Thermal conductivities parallel to the grain alignment were much higher than those measured in other directions and exhibited high values of up to 120 W/(m.K). The anisotropic thermal conductivity of the specimen could be explained by the rule of mixture, considering that large elongated grains developed from seeds have higher thermal conductivity than a small-grained matrix.  相似文献   

15.
The present work is concerned with the sintering of an α-β sialon ceramic using five different silicon nitride powders from a single source. The parameters varied in the silicon nitride were the amount of "free' silicon, iron content, α:β ratio, and grain size as measured by BET surface. The sintering atmosphere was varied by use of protective powder beds with passive (boron nitride) and active (SiO-generating) properties. Five sintering temperatures between 1600° and 1800°C were used. Microstructural characterization as well as density, hardness, and fracture toughness measurements were carried out. The sintering conditions were found to be critical for obtaining fully dense materials and low weight change. The optimum sintering temperature was 1750°C. The silicon nitride powder with a high content of free silicon resulted in a material which was more susceptible to the sintering atmosphere conditions. An α-β sialon made from a silicon nitride powder with a high β-α phase ratio resulted in a higher β-α ratio in the sintered material.  相似文献   

16.
The hot hardness of polycrystalline single-phase α- or β- sialon ceramics declines with increasing temperature, but the measured Vickers hardness (HV1) at 1100°C is still about 1550 and 1300 for the α-sialon and the low-substituted β-sialon materials, respectively. The hardness of 'composite'β- or α-β-sialon ceramics containing a high volume fraction of glassy phase is lower at all temperatures and drops significantly above about 900°C.  相似文献   

17.
Addition of Y2O3 as a sintering additive to porous β-SiAlON (Si6− z Al z O z N8− z , z = 0.5) ceramics has been investigated for improved mechanical properties. Porous SiAlON ceramics with 0.05–0.15 wt% (500–1500 wppm) Y2O3 were fabricated by pressureless sintering at temperatures of 1700°, 1800°, and 1850°C. The densification, microstructure, and mechanical properties were compared with those of Y2O3-free ceramics of the same chemical composition. Although this level of Y2O3 addition did not change the phase formation and grain size, the grain bonding appeared to be promoted, and the densification to be enhanced. There was a significant increase in the flexural strength of the SiAlON ceramics relative to the Y2O3-free counterpart. After exposure in 1 M hydrochloric acid solution at 70°C for 120 h, no remarkable weight loss and degradation of the mechanical properties (flexural and compression strength) was observed, which was attributed to the limited grain boundary phase, and with the minor Y2O3 addition the supposed formation of Y-α-SiAlON.  相似文献   

18.
A direct method for regiospecific analysis of TAG using alpha-MAG   总被引:1,自引:0,他引:1  
Turon F  Bachain P  Caro Y  Pina M  Graille J 《Lipids》2002,37(8):817-821
An analytical procedure was developed for regiodistribution analysis of TAG using α-MAG prepared by an ethyl magnesium bromide deacylation. In the present communication, the deacylation procedure is shown to lead to representative α-MAG, allowing the composition of the native TAG in the α-position to be determined directly. The composition in the β-position can then be estimated from the composition of the α-MAG and TAG according to the formula, 3×TAG-2×α-MAG. The estimates are superior to those obtained using the α,β-DAG and Brockerhoff calculations as they come closer to the theoretical value and have smaller SD. The present procedure, first demonstrated on a synthetic TAG, was then successfully applied to the analysis of borage oil, milkfat, and tuna oil.  相似文献   

19.
Suspensions consisting of precursor α/β SiAlON forming powders, azeotropic solvent mixture of 60 MEK/40E, dispersant, binder, and plasticizer were optimized for tape casting by rheological measurements and tape properties. Sodium tripolyphosphate (STPP) was introduced as a dispersant for low temperature applications of α/β-SiAlONs. Optimum STPP amount was determined as 0.012 g/m2 (of the particle surface) for stable α/β-SiAlON suspensions. Different amounts of binder/plasticizer mixtures were added to the slurries and the effects on rheological and green tape properties were investigated. Green tapes with dibutyl phthalate (DBP), and plasticizer mixture, poly(ethylene glycol) (PEG) and DBP, exhibited centered cracks with high plasticity, on the other hand, polyvinyl butral (PVB) and PEG showed no crack but low plasticity. Therefore, many different parameters were found to be effective on final tape properties. In addition, tapes were prepared with 6 vol% PVB + PEG, sintered at 1800 °C for 2 h and exhibited almost 97%TD in room temperature applications of α/β SiAlONs.  相似文献   

20.
Microstructural evolution of silicon nitride (Si3N4) and SiAlON materials and its influence on creep resistance is reviewed. Grain size, grain morphology, and the ratio of α- to β-phase grains play a part in resistance to creep. The glassy, intergranular phase typically has the strongest influence on creep. Creep data are usually obtained using uniaxial tensile or compressive tests, where creep in tension is controlled by cavitation and grain boundary sliding controls creep in compression. The impression creep methodology is also reviewed. An additional creep mechanism, dilation of the SiAlON grain structure, was found to be active in impression creep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号