首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Carbon nanotubes (CNTs) were synthesized by catalytic decomposition of acetylene over Fe, Ni and Fe–Ni catalysts supported on alumina. The growth of CNTs was carried out at various reaction conditions. The growth density and diameter of CNTs could be controlled by varying the catalyst composition and the growth parameters. The growth density of CNTs increased with increasing the activation time of catalysts in H2 atmosphere and/or decreasing acetylene concentration. At 600°C, higher density of CNTs was observed at 60 min for higher Fe containing catalyst, whereas at 90 min for higher Ni containing catalyst. The growth density of CNTs highly increased with increasing reaction time from 30 to 60 min. For all the catalysts, the diameter of CNTs decreased with increasing growth time further mainly due to hydrogen etching. Bimetallic catalysts produced narrower diameter CNTs than single metal catalysts. The growth of CNTs followed the tip growth mode and the CNTs were multi-walled CNTs.  相似文献   

2.
Carbon nanotubes (CNTs) were synthesized by the catalytic decomposition of acetylene over 40Fe:60Al2O3, 40Ni:60Al2O3 and 20Fe:20Ni:60Al2O3 catalysts. High density CNTs of 20 nm diameter were grown over the 20Fe:20Ni:60Al2O3 catalyst, whereas low growth density CNTs of 40 and 50 nm diameter were found over 40Fe:60Al2O3 and 40Ni:60Al2O3 catalysts. Smaller catalyst particles enabled the synthesis of highly dense, long and narrow-diameter CNTs. It was found that a homogeneous dispersion of the catalyst was an essential factor in achieving high growth density. The carbon yield and the quality of CNTs increased with increasing temperature. For the 20Fe:20Ni:60Al2O3 catalyst, the carbon yield reached 121% after 90 min at 700 °C. The CNTs were grown according to the tip growth mode. Based on reports regarding hydrocarbon adsorption and decomposition over different faces of Ni and Fe, the growth mechanism of CNTs over the 20Fe:20Ni:60Al2O3 catalyst are discussed.  相似文献   

3.
The catalytic reaction concept was introduced in the growth of semiconductor micro- and nano-crystals. It was found that gallium nitride (GaN) micro- and nano-crystal structures, carbon nanaotubes, and silicon carbide (SiC) nanostructures could be efficiently grown using transition metal catalysts. The use of Ni catalyst enhanced the growth rate and crystallinity of GaN micro-crystals. At 1,100 ‡C, the growth rate of GaN micro-crystals grown in the presence of Ni catalyst was over nine times higher than that in the absence of the catalyst. The crystal quality of the GaN microcrystals was almost comparable to that of bulk GaN. Good quality GaN nanowires was also grown over Ni catalyst loaded on Si wafer. The nanowires had 6H hexagonal structure and their diameter was in the range of 30–50 nm. Multiwall nanotubes (MWNTs) were grown over 20Fe : 20Ni : 60Al2O3 catalyst. However, single wall nanotubes (SWNTs) were grown over 15Co : 15Mo : 70MgO catalyst. This result showed that the structure of CNTs could be controlled by the selection of catalysts. The average diameters of MWNTs and SWNTs were 20 and 10 nm, respectively. SiC nanorod crystals were prepared by the reaction of catalytically grown CNTs with tetrametysilane. Structural and optical properties of the catalytically grown semiconductor micro- and nano-crystals were characterized using various analytic techniques. This paper is dedicated to Professor Wha Young Lee on the occasion of his retirement from Seoul National University.  相似文献   

4.
Steam reforming of commercially available LPG using Ru/Al2O3 and Ni/Al2O3 catalysts has been studied at temperatures between 573 and 773 K. Ru/Al2O3 catalyst showed higher rates of reaction and lower activation energies of the three main components of LPG, compared with Ni/Al2O3. However, Ni/Al2O3 catalyst showed a better H2:CH4 selectivity. The activation energy of n-butane was the lowest over Ru/Al2O3, whereas over Ni/Al2O3, propane had the lowest activation energy. The activation energy of i-butane was always the highest over both catalysts, which suggests that both catalysts performed better with unbranched molecules. A slight increase in activation energy was observed, when each component of the LPG mixture was studied separately as a pure gas, compared with being mixed in LPG. At a constant temperature of 773 K, hydrogen production yield and H2:CH4 selectivity were determined using Ru/Al2O3 at different steam:carbon (S:C) ratios and LPG flow rates. It was found that the yield and selectivity increased with the increase in S:C ratio and the decrease in the flow rate. The highest yield of 0.64 was achieved using S:C ratio of 6.5 and a LPG flow rate of 50 mL min?1. The work provides valuable information on steam reforming of pure components of LPG, compared with when they are in the mixture. The comparison is done using conventional steam reforming catalyst, Ni/Al2O3, and compared with Ru/Al2O3. The observed trends and variations in reaction rates, in pure and mixed gases, indicated that the mechanism of steam reforming of a hydrocarbon mixture depends on its composition.  相似文献   

5.
The synthesis of carbon nanotubes (CNTs) from ethylene decomposition by Fe/Al2O3 and Fe/Ni/Al2O3 catalysts (Fe:Ni=10:1) is studied. A small amount of nickel introduced into the catalyst can significantly increase the yield of CNTs, but the nanotubes change from straight tubes with concentric parallel carbon sheets to helical tubes of the fish-bone type. Raman characterization of CNTs prepared at 823 and 1023 K and CNTs annealed at 2473 K shows that CNTs deposited on the Fe/Ni/Al2O3 catalyst have poor crystallinity, as compared with that on the Fe/Al2O3 catalyst. These differences are explained by a mechanism of formation of helical tubes of the fish bone type that takes into consideration the differences in the chemical nature of the catalyst with and without nickel.  相似文献   

6.
The co-production of hydrogen and carbon nanotubes (CNTs) from the decomposition of ethanol over Fe/Al2O3 at different temperatures and feeding rates of ethanol was investigated systematically. The results indicated that Fe/Al2O3 was a quite active catalyst for the co-production of hydrogen and CNTs and that its activity and stability depended strongly on the Fe loading. Among all catalysts tested, 10 mol% Fe/Al2O3 was the most effective catalyst based on the ratio of hydrogen production, the total H2 yield, and the quality of the CNTs formed. The efficiency of hydrogen production from ethanol decomposition over 10 mol% Fe/Al2O3 reached a maximum of 80% at 800 °C and the yield of CNTs with well-oriented growth and uniform diameter was 141%. In addition, the reaction of hydrogen and CNTs co-produced from ethanol decomposition was proposed.  相似文献   

7.
The co-production of hydrogen and carbon nanotubes (CNTs) from the decomposition of ethanol over Fe/Al2O3 at different temperatures and feeding rates of ethanol was investigated systematically. The results indicated that Fe/Al2O3 was a quite active catalyst for the co-production of hydrogen and CNTs and that its activity and stability depended strongly on the Fe loading. Among all catalysts tested, 10 mol% Fe/Al2O3 was the most effective catalyst based on the ratio of hydrogen production, the total H2 yield, and the quality of the CNTs formed. The efficiency of hydrogen production from ethanol decomposition over 10 mol% Fe/Al2O3 reached a maximum of ∼80% at 800 °C and the yield of CNTs with well-oriented growth and uniform diameter was 141%. In addition, the reaction of hydrogen and CNTs co-produced from ethanol decomposition was proposed.  相似文献   

8.
The CH4-CO2 reforming was investigated in a fluidized bed reactor using nano-sized aerogel Ni/Al2O3 catalysts, which were prepared via a sol–gel method combined with a supercritical drying process. The catalysts were characterized with BET, XRD, H2-TPR and H2-TPD techniques. Compared with the impregnation catalyst, aerogel catalysts exhibited higher specific surface areas, lower bulk density, smaller Ni particle sizes, stronger metal-support interaction and higher Ni dispersion degrees. All tested aerogel catalysts showed better catalytic activities and stability than the impregnation catalyst. Their catalytic stability tested during 48 h reforming was dependent on their Ni loadings. Characterizations of spent catalysts indicated that only limited graphitic carbon formed on the aerogel catalyst, while massive graphitic carbon with filamentous morphology was observed for the impregnation catalyst, leading to significant catalytic activity degradation. An aerogel catalyst containing 10% Ni showed the best catalytic stability and the lowest rate of carbon deposition among the aerogel catalysts due to its small Ni particle size and strong metal-support interaction.  相似文献   

9.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made.  相似文献   

10.
Al2O3 supported Mo, Ni, and NiMo/Al2O3 catalysts with various Ni contents were prepared to investigate the role of Ni as a promoter in a NiMo bimetallic catalyst system. The hydrodenitrogenation (HDN) reaction of pyridine as a catalytic probe was conducted over these catalysts under the same reaction conditions and the catalysts were characterized using BET surface area measurement, infrared spectroscopy, temperature programmed reduction, DRS and ESR. According to the results of reaction experiments, the NiMo/Al2O3 catalyst showed higher activity than Mo/Al2O3 catalyst in the HDN reaction and particularly the one with atomic ratio [Ni/(Ni+Mo)]=0.3 showed the best activity for the HDN of pyridine. The findings of this study lead us to suggest that the enhancement in the HDN activity with nickel addition could be attributed to the improvement in the reducibility of molybdenum and the formation of Ni-Mo-O phase.  相似文献   

11.
Fe/Al2O3 catalysts with different Fe loadings (10-90 mol%) were prepared by hydrothermal method. Ethanol decomposition was studied over these Fe/Al2O3 catalysts at temperatures between 500 and 800 °C to produce hydrogen and multi-walled carbon nanotubes (MWCNTs) at the same time. The results showed that the catalytic activity and stability of Fe/Al2O3 depended strongly on the Fe loading and reaction temperature. The Fe(30 mol%)/Al2O3 and Fe(40 mol%)/Al2O3 were both the effective catalyst for ethanol decomposition into hydrogen and MWCNTs at 600 °C. Several reaction pathways were proposed to explain ethanol decomposition to produce hydrogen and carbon (including nanotube) at the same time.  相似文献   

12.
This paper presents the growth evolutions in terms of the structure, growth direction and density of rapid grown carbon nanotube (CNT) forests observed by scanning and transmission electron microcopies (SEM/TEM). A thermal CVD system at around 700 °C was used with a catalyst of Fe films deposited on thin alumina (Al2O3) supporting layers, a very fast raising time to the growth temperature below 25 °C/s, and a carbon source gas of acetylene diluted with hydrogen and nitrogen without water vapor. Activity of Fe catalyst nanoparticles was maintained for 5 min during CVD process, and it results in CNT forests with heights up to 0.6 mm. SEM images suggest that the disorder in CNT alignment at the initial stage of CNTs plays a critical role in the formation of continuous CNT growth. Also, the prolonged heating process leads to increased disorder in CNT alignment that may be due to the oxidation process occurring at the Fe nanoparticles. TEM images revealed that both double- and few-walled CNTs with diameters of 5-7 nm were obtained and the CNT density was controlled by thickness of Fe catalytic layer. The number of experiments at the same conditions showed a very good repeatability and reproducibility of rapid grown CNT forests.  相似文献   

13.
Low temperature growth process of carbon nanotubes (CNTs) over bi-metallic (Co–Fe) and tri-metallic (Ni–Co–Fe) catalysts on Si/Al/Al2O3 substrates is carried out from acetylene precursor using hydrogen, ammonia or nitrogen as a carrier in a low pressure chemical vapor deposition system. Using the tri-metallic Ni–Co–Fe catalyst template, vertically aligned CNTs of ~700 nm length could be grown already at 450 °C within 10 min using ammonia as a carrier. Within the same period of time, on bi-metallic Co–Fe catalyst templates, ~250 nm long aligned nanotubes emerged already at 400 °C in nitrogen carrier. At low temperatures most of the catalyst materials were elevated from the support by the grown nanotubes indicating tip growth mechanism. The structure of catalyst layers and nanotube films was studied using scanning and transmission electron microscopy and atomic force microscopy.  相似文献   

14.
Newly synthesized nickel calcium aluminum catalysts (Ni/Ca12Al14O33) were tested in a fixed bed reactor for biomass tar steam reforming, toluene as tar destruction model compound. Four catalysts (Ni/Ca12Al14O33) were prepared with Ni loading amount from 1, 3, 5 to 7 wt%, even 1% loading catalyst also showed excellent performance. Catalysts aged experiments in the absence (60 h on stream) and presence of H2S were characterized by BET, X-ray diffraction (XRD), and Raman spectra. It was observed that Ni/Ca12Al14O33 showed excellent sustainability against coke formation due to the “free oxygen” in the catalysts. It also exhibited higher H2S-poisoning resistance property compared to the commercial catalysts Ni/Al2O3 (5%) and Ni/CaO0.5/MgO0.5. Raman spectra revealed that “free oxygen O2 and O22−” in the structure of the catalysts could be substituted by sulfur then protected Ni poisoning on some degree, but reactivation experiments by O2 flowing showed that the sulfide Ni/Ca12Al14O33 was difficult to completely restore, incorporation of sulfur in the structure only partly regain by O2. The kinetic model proposes, as generally accepted, a first-order reaction for toluene with activation energy of 82.06 kJ mol−1 was coincident with the literature data. The Ni/Ca12Al14O33 catalyst was effective and relative cheap, which may be lead to reduction in the cost of hot gas cleaning process.  相似文献   

15.
CO2 reforming of CH4 was performed using Ni catalyst supported on La-hexaaluminate which has been an well-known material for high-temperature combustion. La-hexaaluminate was synthesized by sol-gel method at various conditions where different amount of Ni (5–20 wt%) was loaded. Ni/La-hexaaluminate experienced 72 h reaction and its catalytic activity was compared with that of Ni/Al2O3, Ni/La-hexaaluminate shows higher reforming activity and resistance to coke deposition compared to the Ni/Al2O3 model catalyst. Coke deposition increases proportionally to Ni content. Consequently, Ni(5)/La-hexaaluminate(700) is the most efficient catalyst among various Ni/La-hexaaluminate catalysts regarding the cost of Ni in Ni(X)/La-hexaaluminate catalysts. BET surface area, XRD, EA, TGA and TPO were performed for surface characterization. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

16.
Uniform and monolithic NiO–Al2O3 aerogels were prepared from cyclic nickel glycoxide, (CH2O)2Ni, and boehmite sol, AlOOH, and the catalyst performance of the aerogels for the CO2-reforming of methane was investigated. The NiO–Al2O3 aerogels showed higher activity than impregnation NiO/Al2O3 catalysts, while the aerogels exhibited much less activity for coking than the impregnation catalysts. Less deactivation was also observed on the aerogel catalysts than on the impregnation catalysts in the continuous-flow reaction. The Ni was uniformly incorporated throughout alumina where both the metal and the support exist in the aerogel form, i.e., Ni–O–Al bond was considered to be formed in the aerogels. As a result, fine Ni particles appeared after H2 reduction throughout the alumina support with high dispersion, which brought about not only higher activity but also much less activity for coking on the aerogels. Retardation of catalyst deactivation was ascribed to the suppression of both coking and sintering of Ni particles on the aerogels. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
A triple-layered catalyst (Al/Fe/Mo) undergoes considerable restructuring of surface morphology during NH3 annealing prior to carbon nanotube (CNT) growth. The diameter (or density) of AlxOy–Fe clusters formed during the annealing is found to be dependent on the concentration ratio of NH3 to H2O present inside the chamber, which is confirmed by in-situ mass spectroscopy. The different diameter clusters then affect the types of CNTs (i.e. single or multi-walled CNTs) during the growth. Here, a growth model is also presented, where hydrocarbon radicals (C5H9, C6H9, and C6H13) generated from C2H2 pyrolysis (~ 800 °C) can be used as effective precursors to synthesize CNTs.  相似文献   

18.
Supported nickel oxide based catalysts were prepared by wetness impregnation method for the in-situ reactions of H2S desulfurization and CO2 methanation from ambient temperature up to 300 °C. Fe/Co/Ni (10:30:60)–Al2O3 and Pr/Co/Ni (5:35:60)–Al2O3 catalysts were revealed as the most potential catalysts, which yielded 2.9% and 6.1% of CH4 at reaction temperature of 300 °C, respectively. From XPS, Ni2O3 and Fe3O4 were suggested as the surface active components on the Fe/Co/Ni (10:30:60)–Al2O3 catalyst, while Ni2O3 and Co3O4 on the Pr/Co/Ni (5:35:60)–Al2O3 catalyst.  相似文献   

19.
This work reports the enhancing effect of a highly cost effective and efficient metal, Fe, incorporation to Co or Ni based Mo/Al_2O_3 catalysts in the oxidative desulfurization(ODS) of dibenzothiophene(DBT) using H_2O_2 and formic acid as oxidants. The influence of operating parameters i.e. reaction time, catalyst dose, reaction temperature and oxidant amount on oxidation process was investigated. Results revealed that 99% DBT conversion was achieved at 60 °C and 150 min reaction time over Fe–Ni–Mo/Al_2O_3. Fe tremendously enhanced the ODS activity of Co or Ni based Mo/Al_2O_3 catalysts following the activity order: Fe–Ni–Mo/Al_2O_3 NFe–Co–Mo/Al_2O_3 NNi–Mo/Al_2O_3 NCo–Mo/Al_2O_3, while H_2O_2 exhibited higher oxidation activity than formic acid over all catalyst systems. Insight about the surface morphology and textural properties of fresh and spent catalysts were achieved using scanning electron microscopy(SEM), X-ray diffraction(XRD), energy dispersive X-ray(EDX)analysis, Atomic Absorption Spectroscopy(AAS) and BET surface area analysis, which helped in the interpretation of experimental data. The present study can be deemed as an effective approach on industrial level for ODS of fuel oils crediting to its high efficiency, low process/catalyst cost, safety and mild operating condition.  相似文献   

20.
The steam reforming of liquefied petroleum gas (LPG) over Ni- and Rh-based catalysts supported on Gd-CeO2 (CGO) and Al2O3 was studied at 750-900 °C. The order of activity was found to be Rh/CGO > Ni/CGO ∼ Rh/Al2O3 > Ni/Al2O3; we indicated that the comparable activity of Ni/CGO to precious metal Rh/Al2O3 is due to the occurring of gas-solid reactions between hydrocarbons and lattice oxygen () on CGO surface along with the reaction taking place on the active site of Ni, which helps preventing the carbon deposition and promoting the steam reforming of LPG.The effects of O2 (as oxidative steam reforming) and H2 adding were further studied over Ni/CGO and Ni/Al2O3. It was found that the additional of these compounds significantly reduced the amount of carbon deposition and promoted the conversion of hydrocarbons (i.e., LPG as well as CH4, C2H4 and C2H6 occurred from the thermal decomposition of LPG) to CO and H2. Nevertheless, the addition of too high O2 oppositely decreased H2 yield due to the oxidizing of Ni particle and the possible combusting of H2 generated from the reaction, while the addition of too high H2 also negatively affect the catalyst activity due to the occurring of catalyst active site competition and the inhibition of gas-solid reactions between the gaseous hydrocarbon compounds and on the surface of CGO (for the case of Ni/CGO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号