首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of power sources》2006,161(1):707-722
Recent research and development of alternative energy sources have shown excellent potential as a form of contribution to conventional power generation systems. In order to meet sustained load demands during varying natural conditions, different energy sources and converters need to be integrated with each other for extended usage of alternative energy. The paper focuses on the combination of wind, fuel cell (FC) and ultra-capacitor (UC) systems for sustained power generation. As the wind turbine output power varies with the wind speed: an FC system with a UC bank can be integrated with the wind turbine to ensure that the system performs under all conditions. We propose herein a dynamic model, design and simulation of a wind/FC/UC hybrid power generation system with power flow controllers. In the proposed system, when the wind speed is sufficient, the wind turbine can meet the load demand while feeding the electrolyzer. If the available power from the wind turbine cannot satisfy the load demand, the FC system can meet the excess power demand, while the UC can meet the load demand above the maximum power available from the FC system for short durations. Furthermore, this system can tolerate the rapid changes in wind speed and suppress the effects of these fluctuations on the equipment side voltage in a novel topology.  相似文献   

2.
Fuel cell (FC) systems are potentially promising candidates as alternative energy sources for use in vehicular applications. The natural advantages of hybrid power sources may be effectively utilized to improve the efficiency and dynamic response of a vehicular system. Fuel cell (FC) and ultra-capacitor (UC) based hybrid power systems appear to be very promising for satisfying high energy and high power requirements for vehicular applications. In this paper, a FC/UC hybrid vehicular power system using a wavelet based load sharing and fuzzy logic based control algorithm is proposed. While wavelet transforms are suitable for analyzing and evaluating the dynamic load demand profile of a hybrid electric vehicle (HEV), the use of fuzzy logic controller is appropriate for the hybrid system control. The mathematical and electrical models of the hybrid vehicular system are developed in detail and simulated using MATLAB®, Simulink® and SimPowerSystems® environments.  相似文献   

3.
Fuel cell (FC) and ultracapacitor (UC) based hybrid power systems appear to be very promising for satisfying high energy and high power requirements of vehicular applications. The improvement in control strategies enhances dynamic response of the FC/UC hybrid vehicular power system under various load conditions. In this study, FC system and UC bank supply power demand using a current-fed full bridge dc–dc converter and a bidirectional dc–dc converter, respectively. We focus on a novel fuzzy logic control algorithm integrated into the power conditioning unit (PCU) for the hybrid system. The control strategy is capable of determining the desired FC power and keeps the dc voltage around its nominal value by supplying propulsion power and recuperating braking energy. Simulation results obtained using MATLAB® & Simulink® and ADVISOR® are presented to verify the effectiveness of the proposed control algorithm.  相似文献   

4.
In this study, a multi-source hybrid power system consisting of wind turbine (WT), photovoltaic (PV) solar unit, proton exchange membrane (PEM) FC and battery is proposed. The WT and PV generation systems are considered as the main power sources for utilizing the available renewable energy. The FC system is proposed as the back-up generation combined with electrolyzer unit and battery picks up the fast load transients and ripples. In such a hybrid system, energy management plays an important role for the overall system performance and durability. From this perspective, a fuzzy logic based intelligent controller is considered in this study. Besides, a detailed minute-scale meteorological and load demand data is utilized in the simulation process and the importance of utilization of such detailed data is presented. This detailed analysis may be valuable for evaluating the feasibility of grid-independent hybrid renewable energy units for upcoming power systems.  相似文献   

5.
This paper focuses on the combination of wind turbine (WT), photovoltaic (PV), fuel cell (FC) and ultra-capacitor (UC) systems for grid-independent applications. The dynamic behavior of the proposed hybrid system is tested under various wind speed, solar radiation and load demand conditions. The developed model and its control strategy exhibit excellent performance for the simulation of a complete day. In the simulation, the solar radiation and power demand data are based on real world measurements, while the wind speed data are quasi-real because it is simulated based on special wind speed generation algorithms.  相似文献   

6.
The available power generated from a fuel cell (FC) power plant may not be sufficient to meet sustained load demands, especially during peak demand or transient events encountered in stationary power plant applications. An ultracapacitor (UC) bank can supply a large burst of power, but it cannot store a significant amount of energy. The combined use of FC and UC has the potential for better energy efficiency, reducing the cost of FC technology, and improved fuel usage. In this paper, we present an FC that operates in parallel with a UC bank. A new dynamic model and design methodology for an FCand UC-based energy source for stand-alone residential applications has been developed. Simulation results are presented using MATLAB, Simulink, and SimPowerSystems environments based on the mathematical and dynamic electrical models developed for the proposed system.  相似文献   

7.
Hybrid renewable energy systems (HRES) should be designed appropriately with an adequate combination of different renewable sources and various energy storage methods to overcome the problem of intermittency of renewable energy resources. Focusing on the inevitable impact on the grid caused by strong randomicity and apparent intermittency of photovoltaic (PV) generation system, modeling and control strategy of pure green and grid-friendly hybrid power generation system based on hydrogen energy storage and supercapacitor (SC) is proposed in this paper. Aiming at smoothing grid-connected power fluctuations of PV and meeting load demand, the alkaline electrolyzer (AE) and proton exchange membrane fuel cell (PEMFC) and SC are connected to DC bus of photovoltaic grid-connected generation system. Through coordinated control and power management of PV, AE, PEMFC and SC, hybrid power generation system friendliness and active grid-connection are realized. The validity and correctness of modeling and control strategies referred in this paper are verified through simulation results based on PSCAD/EMTDC software platform.  相似文献   

8.
A hybrid (photovoltaic, PV/wind/fuel cell, FC) system comprising different combinations of PV arrays, wind turbine, hydrogen tank, electrolyser, and FC has been investigated for stand-alone applications. Load demand was the electrical requirements of atypical residential apartment having a total area of 500 m2 with a peak electrical load of 35 kW and a yearly load of 24.4 MWh in Kerman, Iran. The assessment criterion for the analysis was levellised cost of energy of each system configuration. National Renewable Energy Laboratory's Hybrid Optimization Model for Electric Renewable software was utilised as the assessment tool of the present study. The effect of electrical load profile on the optimisation results has also been investigated considering a demand load profile with a low peak of 12 kW. Also, a comparison was made between the hybrid (PV/wind/diesel/bat) systems and the hybrid (PV/wind/FC) system of the current study at different fuel price scenarios.  相似文献   

9.
A technico-economic analysis based on integrated modeling, simulation, and optimization approach is used in this study to design an off grid hybrid solar PV/Fuel Cell power system. The main objective is to optimize the design and develop dispatch control strategies of the standalone hybrid renewable power system to meet the desired electric load of a residential community located in a desert region. The effects of temperature and dust accumulation on the solar PV panels on the design and performance of the hybrid power system in a desert region is investigated. The goal of the proposed off-grid hybrid renewable energy system is to increase the penetration of renewable energy in the energy mix, reduce the greenhouse gas emissions from fossil fuel combustion, and lower the cost of energy from the power systems. Simulation, modeling, optimization and dispatch control strategies were used in this study to determine the performance and the cost of the proposed hybrid renewable power system. The simulation results show that the distributed power generation using solar PV and Fuel Cell energy systems integrated with an electrolyzer for hydrogen production and using cycle charging dispatch control strategy (the fuel cell will operate to meet the AC primary load and the surplus of electrical power is used to run the electrolyzer) offers the best performance. The hybrid power system was designed to meet the energy demand of 4500 kWh/day of the residential community (150 houses). The total power production from the distributed hybrid energy system was 52% from the solar PV, and 48% from the fuel cell. From the total electricity generated from the photovoltaic hydrogen fuel cell hybrid system, 80.70% is used to meet all the AC load of the residential community with negligible unmet AC primary load (0.08%), 14.08% is the input DC power for the electrolyzer for hydrogen production, 3.30% are the losses in the DC/AC inverter, and 1.84% is the excess power (dumped energy). The proposed off-grid hybrid renewable power system has 40.2% renewable fraction, is economically viable with a levelized cost of energy of 145 $/MWh and is environmentally friendly (zero carbon dioxide emissions during the electricity generation from the solar PV and Fuel Cell hybrid power system).  相似文献   

10.
Fuel cell (FC) technology is showing excellent promise for many applications ranging from portable devices to vehicular systems. A stand-alone FC may not always satisfy the fast and transient load demands of a vehicular power system. As a result, FC units are usually hybridized with supplementary sources to meet the total power demand of the vehicle. In this paper, the energy demands of a light vehicle (a passenger cart) is developed using a hybrid power supply system involving a photovoltaic (PV) panel, a proton exchange membrane fuel cell (PEMFC) and a battery based energy storage system (ESS). In addition, the details of the physical construction of the modified hybrid cart are given. The most critical feature of an energy management strategy for a multiple-source based hybrid vehicle is the sharing of fast and transient load demands among the available power sources. For this purpose, a 300-s drive cycle is created in this paper to test the effectiveness of the load sharing strategy between FC, battery pack and PV panel. It is found that PEMFC dominates slow and moderate dynamic behaviors of the vehicle, while fast response of the battery group governs the rapid dynamic behaviors. The results also show that the integrating PV panel contributes noticeably to the dynamic behaviors of the system. Furthermore, a control-oriented simulation model for a PEMFC unit is verified with experimental data to test the success of the proposed technique.  相似文献   

11.
Due to increasing concerns on environmental pollution and depleting fossil fuels, fuel cell (FC) vehicle technology has received considerable attention as an alternative to the conventional vehicular systems. However, a FC system combined with an energy storage system (ESS) can display a preferable performance for vehicle propulsion. As the additional ESS can fulfill the transient power demand fluctuations, the fuel cell can be downsized to fit the average power demand without facing peak loads. Besides, braking energy can be recovered by the ESS. This study focuses on a vehicular system powered by a fuel cell and equipped with two secondary energy storage devices: battery and ultra-capacitor (UC). However, an advanced energy management strategy is quite necessary to split the power demand of a vehicle in a suitable way for the on-board power sources in order to maximize the performance while promoting the fuel economy and endurance of hybrid system components. In this study, a wavelet and fuzzy logic based energy management strategy is proposed for the developed hybrid vehicular system. Wavelet transform has great capability for analyzing signals consisting of instantaneous changes like a hybrid electric vehicle (HEV) power demand. Besides, fuzzy logic has a quite suitable structure for the control of hybrid systems. The mathematical and electrical models of the hybrid vehicular system are developed in detail and simulated using MATLAB®, Simulink® and SimPowerSystems® environments.  相似文献   

12.
The hybridization of the fuel-cell electric-vehicle (FCEV) by a second energy source has the advantage of improving the system's dynamic response and efficiency. Indeed, an ultra-capacitor (UC) system used as an energy storage device fulfills the FC slowest dynamics during fast power transitions and recovers the braking energy. In FC/UC hybrid vehicles, the search for a suitable power management approach is one of the main objectives. In this paper, an improved control strategy managing the active power distribution between the two energy sources is proposed. The UC reference power is calculated through the DC link voltage regulation. For the FC power demand, an algorithm with five operating modes is developed. This algorithm, depending on the UC state of charge (SOC) and the vehicle speed level, minimizes the FC power demand transitions and therefore ameliorates its durability. The traction power is provided using two permanent magnetic synchronous motor-wheels to free more space in the vehicle. The models of the FC/UC vehicle system parts and the control strategy are developed using MATLAB software. Simulation results show the effectiveness of the proposed energy management strategy.  相似文献   

13.
Depending on growing concerns on energy crises and environmental issues, fuel cell (FC) powered electrical vehicles are favored for possible substitute to conventional internal combustion engine (ICE) based vehicular systems. However, the typical power profile of an automobile motor consisting of transients is not suitable for the use of a sole FC system for vehicle propulsion. This shortcoming could be partly overcome by hybridization. Two potential benefits of combining an FC system with an energy storage unit, ultra-capacitor (UC) has been presented in this study. Firstly, the durability of the FC system could be improved because the additional energy source can fulfill the transient power demand fluctuations. Secondly, the ability of the energy storage source to recover braking energy enhances the fuel economy greatly. An important aspect in designing a hybrid power structure is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. An integrated procedure for mathematical modeling and power control strategy design for an FC/UC hybrid vehicle is presented in this paper. A fuzzy logic supervisory controller based power management strategy that secures the power balance in hybrid structure, enhances the FC performance and minimizes the power losses is proposed. The main contribution of this paper apart from the previous studies of the authors is the modeling of the complete FC power system with air supply compressor and the integration of the control of the FC system internal dynamics (especially the oxygen excess ratio) into the overall supervisory control structure to maximize the efficiency and durability. To demonstrate the effectiveness of the proposed power management scheme, simulation studies were performed using MATLAB®, Simulink® and SimPowerSystems® environments by integrating the detailed mathematical and electrical models of the hybrid vehicular system.  相似文献   

14.
15.
An improved fuzzy-based energy management strategy (EMS) is proposed for a tourist ship used hybrid power system with multiple power sources consisting of fuel cell(FC)/photovoltaic cell(PV)/battery(BAT)/super-capacitor(SC). The power demand from propeller and user terminal is afforded by the power sources connecting to power converters. To obtain more superior performance of the power system, the maximum power point tracking (MPPT) algorithm is employed to optimize the PV. Meanwhile, the improved fuzzy logic control based on dynamic programming (DP) associated with wavelet analysis and PI control are employed to achieve the output power optimal distribution and online control. In particular, the MPPT algorithm can improve the utilization of solar energy, and the SC can well absorb the high frequency power and reduce the fluctuation of the battery and FC that exhibits the potential of their lifetime extension. The FC outputs the high and stable power satisfying the ship's power demand even under the extreme work conditions. The developed model is able to illustrate well in the operation process of the hybrid power system governed by the proposed EMS. In addition, compared with the rule-based strategy, the improved fuzzy-based EMS can reduce 14.39% hydrogen consumption and keep the consistency of battery SOC.  相似文献   

16.
It is necessary to have an energy management system based on one or more control strategies to sense, monitor, and control the behavior of the hybrid energy sources. In renewable hybrid power systems containing fuel cells and batteries, the hydrogen consumption reduction and battery state of charge (SOC) utilizing are the main objectives. These parameters are essential to get the maximum befits of cost reduction as well as battery and hydrogen storage lifetime increasing. In this paper, a novel hybrid energy management system (HEMS) was designed to achieve these objectives. A renewable hybrid power system combines: PV, PEMFC, SC, and Battery was designed to supply a predetermined load with its needed power. This (REHPS) depends on the PV power as a master source during the daylight. It uses the FC to support as a secondary source in the night or shading time. The battery is helping the FC when the load power is high. The supercapacitor (SC) is working at the load transient or load fast change. The proposed energy management system uses fuzzy logic and frequency decoupling and state machine control strategies working together as a hybrid strategy where the switching over between both strategies done automatically based on predetermined values to obtain the minimum value of hydrogen consumption and the maximum value of SOC at the same time. The proposed HEMS achieves 19.6% Hydrogen consumption saving and 5.4% increase in SOC value compared to the results of the same two strategies when working as a stand-alone. The load is designed to show a surplus power when the PV power is at its maximum value. This surplus power is used to charge the battery. To validate the system, the results were compared with the results of each strategy if working separately. The comparison confirms the achievement of the hybrid energy management system goal.  相似文献   

17.
There is a growing awareness that combustion fuels are a limited resource and burning of these fuels is the principal cause of air pollution, and possibly environmental warming. This recognition is elevating interest and activity toward the development and application of alternative/renewable sources of energy, such as solar energy to displace some of the use of fossil fuels. In this context, Saudi Arabia being enriched with fairly high degree of solar radiation, is a suitable candidate for deployment of solar photo-voltaic (PV) panels for power generation in crisis. Literature shows that residential buildings in Saudi Arabia consume about 47% of the total electric energy generated/consumed. In the present study, hourly mean solar radiation data for the period 1986–1993 recorded at the solar radiation and meteorological monitoring station, Dhahran (26° 32’ N, 50°13’ E), Saudi Arabia, have been analyzed to examine/investigate the potential of utilizing hybrid (PV + diesel) power systems to meet the load requirements of a typical residential building (with annual electrical energy demand of 35 200 kWh). The monthly average daily values of solar global irradiation for Dhahran range from 3.61 kwh/m2 to 7.96 kwh/m2. The hybrid systems considered in the present analysis consist of different combinations of PV panels/modules (different array sizes) supplemented with battery storage unit and diesel back-up. The study shows that with 225 m2 PV together with 12 h of battery storage, the diesel back-up system has to provide 9% of the load demand. However, in absence of battery bank, about 58% of the load needs to be provided by the diesel system.  相似文献   

18.
In this paper, a new strategy for modeling and controlling a hybrid power generation system that contains a fuel cell (FC) and super capacitor (SC) system is proposed. The main drawback of FC systems is its slow dynamic because the FC current slope must be limited in order to prevent fuel starvation problems and to improve its efficiency and lifetime. To overcome this slow dynamic and to improve dynamic performance, a new control strategy is proposed to combine FC system with SC system. The proposed control strategy can be also used for cold starting and different types of FC systems with different dynamics. The control strategy is capable of determining the desired FC power to prolong FC system lifetime and keeps the AC and DC voltages around its nominal value in transient event by supplying propulsion power and recuperating FC energy. The minimum SC system is computed in new method and used to meet the load demand to constraint the DC bus voltage and enhances power regulation under various active and reactive load conditions. Two different case studies are used to obtain the simulation results using MATLAB/SIMULINK to verify the validity of the proposed control strategy.  相似文献   

19.
The objective of this study is to evaluate the technical and economic feasibility of stand-alone hybrid photovoltaic (PV)/battery and PV/battery/fuel cell (FC) power systems for a community center comprising 100 households in Kunming by using the Hybrid Optimization Model for Electric Renewable (HOMER) software. HOMER is used to define the optimum sizing and techno-economic feasibility of the system equipment based on the geographical and meteorological data of the study region. In this study, different hybrid power systems are analyzed to select the optimum energy system while considering total net present cost (NPC) and levelized cost of energy (COE). The results showed that the optimal hybrid PV/battery system comprised 500 kW PV modules, 1200 7.6-kWh battery units, and 500 kW power converters. The proposed system has an initial cost of $6,670,000, an annual operating cost of $82,763/yr, a total NPC of $7,727,992, and a levelized COE of $1.536/kWh. While the PV/battery/FC power system is possible, the cost increases were due to the investment cost of the FC system. The optimal PV/battery/FC system has an initial cost of $6,763,000, an annual operating cost of $82,312/yr, a total NPC of $7,815,223, and a levelized COE of $1.553/kWh.  相似文献   

20.
This paper describes a methodology for applying geographical information systems (GIS) tools to site a photovoltaic (PV) park inside a sustainable community, in order, not only to meet all siting restrictions, such as environmental protection, but also to operate a PV park more efficiently reducing the shading effect erection and cabling cost. Additionally, the PV operation impact on the grid is investigated, integrating GIS maps into power systems analysis software, such as the PowerWorld® Simulator. In other words, this paper also stresses the importance of GIS for the design, installation and monitoring of power systems. A case study considering the Campus of the Technical University of Crete has been performed showing that siting properly a PV installation meeting 20% of the demand can gain significant savings in both peak and regular energy demands, especially on peak summer days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号