首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, gas metal arc welding (GMAW) with flux-cored wires and solid wires using shielding gas has been adopted for welding stainless steel. Five different compositions of shielding gas are used with flux-cored wire and three with solid wire. Spatter rates, chemical compositions, tensile strength and elongation tests have been performed and are reported. The spatter rates of the sample made using flux-cored wires are less than that for the sample made using solid wire. The ultimate tensile strength and elongation are not influenced by the composition of the shielding gas.  相似文献   

2.
New environmental, health and safety legislation, both in the EU and in the USA, is driving the need for the study of new welding processes, and the selection of the operational procedures that will reduce fume emissions and will promote a healthier, safer and more productive work environment. Actually, there are a significant number of publications related with gas metal arc welding hazards. However, for the new gas metal arc welding hazards variants, especially cold metal transfer, there is no data available concerning fumes and gases emissions. This paper attempts to point out ways of reducing the harmful effects of gas metal arc welding processes using different filler materials, different shielding gases, different operational welding procedures and three welding processes: gas metal arc welding process and two variants, pulsed gas metal arc welding and cold metal transfer. The effect of nitrogen oxide addition to the shielding gas composition on the amount of welding fumes and gaseous emissions produced during welding is also analysed. The amount of fume and gases generated during welding was measured over a range of current intensity and arc voltages, using the standard procedures contained in EN ISO 15011-2 [1]. The data presented give a summary of the different gas metal arc welding variants and their relations to fume generation rates and gases emitted. The results obtained give indications on measures to be taken in order to reduce fume and gas emissions. In general, the minimisation of fume formation rate can be achieved by using lower energy gas metal arc welding variants, gas shielding with low CO2 and O2 contents and “green” wires.  相似文献   

3.
Wire feed rate plays a vital role in determining the weld characteristics in gas metal arc welding (GMAW). The wire feed rate is affected by any change in welding current in the case of steady current GMA welding and by any change in frequency, peak current, base current and duration of peak and base currents in the case of pulsed GMA welding. To predict the wire feed rate for any set of these parameters, a mathematical model was developed from the results obtained by conducting experiments. Electrode resistance heating constant and arc resistance heating constant were also determined by fitting a regression model. The above parametric constants have been used to simulate the wire feed rates for pulsed GMA welding for different pulse parameters using MATLAB. The effects of pulse parameters on the burnoff factor and burnoff rates were also analysed. The investigation was carried out using AWS 5.22–95 filler wire of size 1.2 mm diameter and the base metal used was IS:2062 structural steel plate of 20 mm thickness. An argon and 5% CO2 gas mixture at a flow rate of 16 l/min was used for shielding throughout the welding.  相似文献   

4.
The present study is focused on welding of super austenitic stainless steel sheet using gas metal arc welding process with AISI 904 L super austenitic stainless steel with solid wire of 1.2 mm diameter. Based on the Box — Behnken design technique, the experiments are carried out. The input parameters (gas flow rate, voltage, travel speed and wire feed rate) ranges are selected based on the filler wire thickness and base material thickness and the corresponding output variables such as bead width (BW), bead height (BH) and depth of penetration (DP) are measured using optical microscopy. Based on the experimental data, the mathematical models are developed as per regression analysis using Design Expert 7.1 software. An attempt is made to minimize the bead width and bead height and maximize the depth of penetration using genetic algorithm.  相似文献   

5.
In this study, AISI 316 L austenitic stainless steel and AH36 low-alloy ship building steel pair were joined with flux-cored arc welding method by using E309LT1-1/4 filler metal under four different shielding gas compositions containing CO2 at different ratios. Microstructure, impact toughness of welded materials, and their microhardness distribution throughout joining were determined. In macro- and microstructure examinations, stereo optical microscope, scanning electron microscope (SEM), SEM/energy dispersive spectroscopy, and SEM/mapping analysis techniques were used. After notched impact toughness, fracture surfaces were examined using the scanning electron microscope. This study investigated effects of shielding gas composition on microstructure, impact toughness, and microhardness distribution of transition zone between AH36 steel and weld metal of joined material. It is observed that based on an increase in amount of CO2 in shielding gas, impact toughness values of the weldment decreased. Microhardness values change throughout weld metal depended on shielding gas composition. Moreover, an increase in amount of CO2 within shielding gas decreased δ-ferrite amount in weld metal. The increase in amount of CO2 within shielding gas leads to expanded transition zone in interface between AH36 and weld metal and also affects notched impact toughness values negatively due to the inclusion amounts occurring in weld metal and hence caused it to decrease.  相似文献   

6.
Manufacturing productivity can be improved by increasing the welding speed. However, humping bead will occur when welding speed is beyond a certain value. An experimental system of double-electrode gas metal arc welding (DE-GMAW) was developed to implement high speed welding and prevent from humping bead formation. The DE-GMAW appropriately partition the heat energy between the wire and the base metal so that higher deposition rate of filler wire and suitable shape and size of weld pool are ensured. The arc images captured during DE-GMAW process were used to optimize the geometric parameters between the gas tungsten arc welding and the gas metal arc welding (GMAW) torches. The main arc and bypass arc integrated well and satisfactory weld bead formation was obtained. Through observing the weld pool behaviors from side view during DE-GMAW process, it was found that the height of both solidified and molten region at the pool tail is almost flat so that no humping bead was formed during DE-GMAW with the welding speed up to 1.7?m/min. The side view images of weld pool in DE-GMAW were compared with those in conventional GMAW, and the reason why DE-GMAW can suppress humping bead is shortly discussed.  相似文献   

7.
Abstract with the purpose of improving weld joint quality and productivity, the oscillating arc narrow gap gas metal arc (GMA) welding was employed in welding quenched and tempered high-strength low-alloy thick steel. The microstructure and mechanical properties of weld joints were evaluated, namely micro-hardness, tensile strength, and low-temperature impact toughness. The test results indicated that mechanical properties of weld joints with oscillating arc narrow gap GMA welding were excellent and found to meet stipulated requirements. Oscillating arc narrow gap GMA welding is a promising process for welding quenched and tempered HSLA thick steels due to the low energy input and narrow square-butt groove.  相似文献   

8.
In this study, AISI 430 ferritic stainless steel couple of 10 mm thickness was welded by keyhole plasma transferred arc welding (KPTAW) process with or without filler wire addition using AISI 316L austenitic stainless steel interlayer of 2 mm thickness. Welded joints were manufactured with constant traverse speeds (0.01 m/min) under two different welding currents (110 and 130 A) at two different plasma gas flow rates (1.1 and 1.2 l/min), nozzle diameter (2.4 mm), and a shielding gas flow rate (25 l/min). In order to determine the microstructural changes that occurred, the interface regions of the welded samples were examined by scanning electron microscopy (SEM), optic microscopy, X-ray diffraction, and energy dispersive spectrometry after KPTAW. Microhardness and V-notch impact tests were conducted to determine the mechanical properties of the welded samples. In addition, fracture surface was examined by SEM after impact test.  相似文献   

9.
There is an increased requirement in the automotive, food and medical equipment industries to weld heat-sensitive materials, such as thin sheets, coated thin plates, stainless steel, aluminium and mixed joints. Nevertheless, relevant innovations in arc welding are not widely known and seldom used to their maximum potential. In the area of gas metal arc welding welding processes, digitalisation has allowed integration of software into the power source, wire feeder and gas regulation. This paper reviews developments in the arc welding process, particularly the effect of the set-up of the welding process parameters on waveform deposition. It is found that good weldability, good mechanical joint properties and acceptable process efficiency can be obtained for thin sheets through advanced power source regulation, especially over short circuiting, controlled polarity and electrode wire motion. The findings presented in this paper are valuable for waveform and deposition prediction. The need is furthermore noted for an algorithm that integrates gas flow parameters and wire motion control, as well as a variable sensor on the tip of the electrode, permitting flexibility of control of the current and the voltage waveform.  相似文献   

10.
A 17 mm low-carbon steel plate is welded by a fiber laser with a narrow gap joint configuration and multi-pass technique. A high-speed camera is used to real-time monitor the welding process, and the effects of groove size and the side shielding gas on the weld quality are studied. Experimental results showed that a concave shape in the bottom of weld can be formed when use a general shielding gas nozzle with the 8.0 mm external diameter. Through a special design of the shielding gas nozzle with the 2.0 mm external diameter which can deep into the interior of groove, the pressure from shielding gas can balance the surface tension from the liquid in the top of groove, so the shielding effect can be dramatically improved and the concave shape in the bottom of weld can be eliminated. When the filler wire and laser beam can smoothly enter the groove, using a relatively small groove size not only reduce the consumption of filler wire but also reduce the deflection of filler wire in the gap that can improve the fusion of groove.  相似文献   

11.
A cable-type welding wire (CWW) gas metal arc welding (GMAW) method was proposed as a novel approach, using CWW for the consumable electrode. Droplet transfer influences the welding process, and the forces on the droplet were analyzed to elucidate the metal transfer phenomenon observed during the welding process. The effects of the arc pressure, rotating force, and welding parameters were analyzed to understand the metal transfer. The special structure of the CWW affected the arc characteristics and forces during metal transfer as part of the welding process. The droplet formed by droplets from each thin wire, the arc, and electromagnetic forces on droplet formation and the coupling process were analyzed. The arc pressure and rotating forces are beneficial to metal transfer and increase the droplet transfer frequency. The droplet size decreases with increasing welding parameters.  相似文献   

12.
分别采用钨极氩弧焊(TIG)、选用ER309L焊丝和焊条电弧焊(SMAW)、选用A302焊条两种不同工艺焊接405/Q245R不锈钢复合板的覆层和过渡层,并采用焊条电弧焊方法、选用E4315焊条焊接其基层。对复合板接头进行力学性能测试,结果表明,接头的抗拉强度接近于母材本身强度,拉伸试样断裂均发生于母材部位;对接头金相组织的观察显示,两种接头的过渡层焊缝组织均为奥氏体加少量铁素体,在过渡层焊缝/基层母材侧界面未发生明显的碳迁移现象;进一步对过渡层焊缝进行XRD测定,未发现接头焊缝中有害相的生成,说明获得接头的性能良好,焊接工艺可行,能够满足工程实际需要。  相似文献   

13.
The International Journal of Advanced Manufacturing Technology - To reduce the consumption of gas metal arc welding shielding gas and improve welding quality, three spiral-diffusion nozzles with...  相似文献   

14.
基于旁路耦合电弧的铝钢MIG熔钎焊研究   总被引:6,自引:0,他引:6  
实现铝钢良好连接的关键是有效控制焊接热输入,尽量降低中间层铝铁金属间化合物的厚度,一般认为中间层金属间化合物厚度小于10μm时铝钢接头质量良好。提出旁路耦合电弧熔钎焊方法,通过调节旁路电弧电流的大小来控制焊接热输入。在优化控制系统和工艺参数的基础上采用脉冲旁路耦合电弧焊方法将铝镁合金ER5356堆焊到304不锈钢板上,获得结合良好的焊缝。对焊接接头进行扫描电镜(Scanning electron microscope,SEM)、能量色散光谱仪(Energy dispersive spectrometry,EDS)分析,结果表明:铝与不锈钢焊接接头中间层金属间化合物平均厚度约为8μm,小于10μm的临界厚度;脉冲旁路耦合电弧焊方法能够实现铝钢的连接,是一种新型低成本低热输入电弧焊方法。  相似文献   

15.
The weldability of copper-bearing aging steel is evaluated using calculated cracking susceptibility index Pcm,oblique Y-groove cracking test,heat-affected zone (HAZ) maximum hardness measurement,submerged arc welding (SAW) test and gas metal arc welding (GMAW) test.The results show that this copper-bearing aging steel has low hardenability and cold cracking susceptibility.SAW test of 40 mm thick plate with WS03 wire matched by CHF101 flux reveals that the welded joints obtain high strength and good impact toughness at low temperature.The HAZ has no hardening but there exists a slightly softening phenomenon.Thus,line energy should be limited or controlled strictly to avoid softening behavior in HAZ during SAW.GMAW tests of 12mm and 24mm thick plates using WER70NH wire show that the tensile strength of joints reaches 720MPa,higher than the stipulated strength requirement of base metal.The average impact energy at-40℃ in the welded joints is more than 140J exceeding minimum stipulated requirement by a wide margin.There are no hardening and softening behaviors in the heat-affected zones of GMAW.All weld metals exhibit acicular ferrite (AF) plus small amount of proeutectoid ferrite (PF) structure,of which the former can significantly improve impact toughness of weld metal.The predominant microstructure in coarse grain HAZ is bainite.  相似文献   

16.
One function of shielding gases used in welding processes, such as hydrogen (H2), oxygen (O2), carbon dioxide (CO2), nitrogen (N2), helium (He), argon (Ar) and their mixtures, is protection of the weld pool against harmful contamination that could generate defects. In addition to this primary function, shielding gases significantly affect the shape of the weld, weld geometry, seam appearance, metallurgical and mechanical properties, welding speed, metal transfer, arc stability or beam and fume emissions. The shielding gas is thus a key factor in determining weld joint properties and welding process efficiency. As welding processes have become enhanced and welding research has advanced, different combinations of shielding gas mixtures have become available under a wide variety of trademarks, each claiming to offer the best efficiency. The shielding gas flow rate in GMAW welding is usually set according to empirical experiment. The flow generally remains unchanged throughout the entire welding process and is set at maximum values of the welding parameters so that there is sufficient gas cover. This setting means, however, that unnecessarily large quantities of shielding gas may be consumed in other phases of the welding process. In view of constantly increasing prices and shortfalls in helium supply, there is a need to optimize the use of shielding gas. Consequently, an ability to closely monitor the shielding gas blend and reduce waste can provide valuable cost savings. This paper examines the effects of shielding gas mixtures and their components, presents a cross-comparison of shielding effects in fusion welding and suggests guidelines for adaptive controllability of shielding gas in advanced adaptive fusion welding. The study reviews scientific case studies and experiments from the point of view of the effect of the shielding gas on the process efficiency and process outcome. The study considers shielding gases for welding of both ferrous metals (i.e. carbon steels, stainless steels, high-strength steels) and non-ferrous metals (i.e. aluminium and its alloys, nickel and its alloys and copper and its alloys). Appropriate choice of shielding gas and use of an optimum flow rate results in better quality in terms of increased productivity, reduced gas consumption and improved weld geometry properties, microstructure and mechanical properties. Although some blends can be used effectively in many different processes, other blends appear process-dependent; they produce far poorer results when utilized in non-appropriate processes. Particle image velocimetry (PIV) and Schlieren techniques can be used for visual sensing of gas flow during fusing welding. Moreover, an adaptive alternative gas supply can improve welding performance and weld quality and reduce harmful fume emission.  相似文献   

17.
药芯焊丝气体保护焊在锅炉承压件上的应用研究   总被引:1,自引:0,他引:1  
采用组合焊缝试件和对接焊缝试件对药芯焊丝CO2气体保护焊主要焊接参数如焊接电流、电弧电压、焊丝伸出长度、保护气体流量等进行焊接工艺试验分析,并对焊后热处理的焊接接头进行了化学成分、金相组织及力学性能的测定。结果表明氩弧焊打底+药芯焊丝气体保护焊是提高锅炉产品(锅筒、集箱)上“T”型对接接头尤其是Ф159以上厚壁管接头的焊接效率和质量的有效方法。  相似文献   

18.
用药芯焊丝CO2气体保护焊焊接Domex700MC低合金高强钢,用光学显微镜、硬度计和冲击试验机等对焊接接头的显微组织和力学性能进行了分析。结果表明:焊缝金属晶粒细小且分布均匀,有较多针状铁素体,但熔合区组织比较粗大,使熔合区附近塑性降低,为焊接接头的薄弱部位;焊缝金属显微硬度较高,为315HV,而在热影响区为225HV,出现软化现象;焊接接头力学性能优良,具有较高的抗拉强度(630.94MPa)和冲击功(135.34J)。  相似文献   

19.
High strength aluminum alloys (Al-Zn-Mg-Cu alloys) have gathered wide acceptance in the fabrication of lightweight structures requiring high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding processes of high strength aluminum alloy are frequently the gas tungsten arc welding (GTAW) process and the gas metal arc welding (GMAW) process due to their comparatively easy applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results in inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying a pulsed current welding technique. Rolled plates of 6 mm thickness were used as the base material for preparing single pass welded joints. A single ‘V’ butt joint configuration was prepared for joining the plates. The filler metal used for joining the plates was AA 5356 (Al-5Mg (wt%)) grade aluminum alloy. Four different welding techniques were used to fabricate the joints: (1) continuous current GTAW (CCGTAW), (2) pulsed current GTAW (PCGTAW), (3) continuous current GMAW (CCGMAW) and (4) pulsed current GMAW (PCGMAW). Argon (99.99% pure) was used as the shielding gas. Tensile properties of the welded joints were evaluated by conducting tensile tests using a 100 kN electro-mechanical controlled universal testing machine. Current pulsing leads to relatively finer and more equi-axed grain structure in GTA and GMA welds. In contrast, conventional continuous current welding resulted in predominantly columnar grain structures. Grain refinement is accompanied by an increase in tensile strength and tensile ductility.  相似文献   

20.
研究激光和Ar+He混合气体中He气体体积分数对激光+双丝脉冲MAG复合焊焊接稳定性的影响。搭建激光+双丝脉冲熔化极活性气体保护(Metal active-gas, MAG)复合焊焊接系统,利用LabVIEW信号采集系统采集焊接电流和电弧电压波形,借助高速摄像系统同步拍摄电弧形态和熔滴过渡过程,实时监测焊接过程。观察后丝短路和前丝断弧情况并对前丝电弧电压进行单因素方差分析,研究Ar+He混合气体中He气体体积分数对焊接稳定性影响;比较焊接过程中激光的有无对熔滴过渡的影响,分析激光对焊接稳定性影响。结果发现随着He气体体积分数增大,后丝对应短路次数增多,当He气体体积分数为50%时,前丝出现断弧现象,大于50%,断弧时间随之增加,焊接稳定性变差;激光+双丝脉冲MAG复合焊和双丝脉冲MAG复合焊相比,加入激光可稳定电弧,为熔滴提供一附加力,该力促进熔滴过渡,使熔滴过渡尺寸减小,加大过渡频率,改善熔滴过渡,提高焊接稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号