首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 920 毫秒
1.
The Doob graph D(m, n), where m > 0, is a Cartesian product of m copies of the Shrikhande graph and n copies of the complete graph K 4 on four vertices. The Doob graph D(m, n) is a distance-regular graph with the same parameters as the Hamming graph H(2m + n, 4). We give a characterization of MDS codes in Doob graphs D(m, n) with code distance at least 3. Up to equivalence, there are m 3/36+7m 2/24+11m/12+1?(m mod 2)/8?(m mod 3)/9 MDS codes with code distance 2m + n in D(m, n), two codes with distance 3 in each of D(2, 0) and D(2, 1) and with distance 4 in D(2, 1), and one code with distance 3 in each of D(1, 2) and D(1, 3) and with distance 4 in each of D(1, 3) and D(2, 2).  相似文献   

2.
It is known that the controllable system x′ = Bx + Du, where the x is the n-dimensional vector, can be transferred from an arbitrary initial state x(0) = x 0 to an arbitrary finite state x(T) = x T by the control function u(t) in the form of the polynomial in degrees t. In this work, the minimum degree of the polynomial is revised: it is equal to 2p + 1, where the number (p ? 1) is a minimum number of matrices in the controllability matrix (Kalman criterion), whose rank is equal to n. A simpler and a more natural algorithm is obtained, which first brings to the discovery of coefficients of a certain polynomial from the system of algebraic equations with the Wronskian and then, with the aid of differentiation, to the construction of functions of state and control.  相似文献   

3.
We consider a class of graphs G(n, r, s) = (V (n, r),E(n, r, s)) defined as follows:
$$V(n,r) = \{ x = ({x_{1,}},{x_2}...{x_n}):{x_i} \in \{ 0,1\} ,{x_{1,}} + {x_2} + ... + {x_n} = r\} ,E(n,r,s) = \{ \{ x,y\} :(x,y) = s\} $$
where (x, y) is the Euclidean scalar product. We study random subgraphs G(G(n, r, s), p) with edges independently chosen from the set E(n, r, s) with probability p each. We find nontrivial lower and upper bounds on the clique number of such graphs.
  相似文献   

4.
The (s + t + 1)-dimensional exchanged crossed cube, denoted as ECQ(s, t), combines the strong points of the exchanged hypercube and the crossed cube. It has been proven that ECQ(s, t) has more attractive properties than other variations of the fundamental hypercube in terms of fewer edges, lower cost factor and smaller diameter. In this paper, we study the embedding of paths of distinct lengths between any two different vertices in ECQ(s, t). We prove the result in ECQ(s, t): if s ≥ 3, t ≥ 3, for any two different vertices, all paths whose lengths are between \( \max \left\{9,\left\lceil \frac{s+1}{2}\right\rceil +\left\lceil \frac{t+1}{2}\right\rceil +4\right\} \) and 2 s+t+1 ? 1 can be embedded between the two vertices with dilation 1. Note that the diameter of ECQ(s, t) is \( \left\lceil \frac{s+1}{2}\right\rceil +\left\lceil \frac{t+1}{2}\right\rceil +2 \). The obtained result is optimal in the sense that the dilations of path embeddings are all 1. The result reveals the fact that ECQ(s, t) preserves the path embedding capability to a large extent, while it only has about one half edges of CQ n .  相似文献   

5.
An algorithm to design combinatorial symmetrical block diagrams of the class B(n, s = p + 1, σ = 1), where p is a simple number, was described and illustrated by an example for s = 7 + 1.  相似文献   

6.
We introduce a construction of a set of code sequences {Cn(m) : n ≥ 1, m ≥ 1} with memory order m and code length N(n). {Cn(m)} is a generalization of polar codes presented by Ar?kan in [1], where the encoder mapping with length N(n) is obtained recursively from the encoder mappings with lengths N(n ? 1) and N(n ? m), and {Cn(m)} coincides with the original polar codes when m = 1. We show that {Cn(m)} achieves the symmetric capacity I(W) of an arbitrary binary-input, discrete-output memoryless channel W for any fixed m. We also obtain an upper bound on the probability of block-decoding error Pe of {Cn(m)} and show that \({P_e} = O({2^{ - {N^\beta }}})\) is achievable for β < 1/[1+m(? ? 1)], where ? ∈ (1, 2] is the largest real root of the polynomial F(m, ρ) = ρm ? ρm ? 1 ? 1. The encoding and decoding complexities of {Cn(m)} decrease with increasing m, which proves the existence of new polar coding schemes that have lower complexity than Ar?kan’s construction.  相似文献   

7.
We address the problem of minimizing power consumption when broadcasting a message from one node to all the other nodes in a radio network. To enable power savings for such a problem, we introduce a compelling new data streaming problem which we call the Bad Santa problem. Our results on this problem apply for any situation where: (1) a node can listen to a set of n nodes, out of which at least half are non-faulty and know the correct message; and (2) each of these n nodes sends according to some predetermined schedule which assigns each of them its own unique time slot. In this situation, we show that in order to receive the correct message with probability 1, it is necessary and sufficient for the listening node to listen to a \(\Theta(\sqrt{n})\) expected number of time slots. Moreover, if we allow for repetitions of transmissions so that each sending node sends the message O(log?? n) times (i.e. in O(log?? n) rounds each consisting of the n time slots), then listening to O(log?? n) expected number of time slots suffices. We show that this is near optimal.We describe an application of our result to the popular grid model for a radio network. Each node in the network is located on a point in a two dimensional grid, and whenever a node sends a message m, all awake nodes within L distance r receive m. In this model, up to \(t<\frac{r}{2}(2r+1)\) nodes within any 2r+1 by 2r+1 square in the grid can suffer Byzantine faults. Moreover, we assume that the nodes that suffer Byzantine faults are chosen and controlled by an adversary that knows everything except for the random bits of each non-faulty node. This type of adversary models worst-case behavior due to malicious attacks on the network; mobile nodes moving around in the network; or static nodes losing power or ceasing to function. Let n=r(2r+1). We show how to solve the broadcast problem in this model with each node sending and receiving an expected \(O(n\log^{2}{|m|}+\sqrt{n}|m|)\) bits where |m| is the number of bits in m, and, after broadcasting a fingerprint of m, each node is awake only an expected \(O(\sqrt{n})\) time slots. Moreover, for t≤(1?ε)(r/2)(2r+1), for any constant ε>0, we can achieve an even better energy savings. In particular, if we allow each node to send O(log?? n) times, we achieve reliable broadcast with each node sending O(nlog?2|m|+(log?? n)|m|) bits and receiving an expected O(nlog?2|m|+(log?? n)|m|) bits and, after broadcasting a fingerprint of m, each node is awake for only an expected O(log?? n) time slots. Our results compare favorably with previous protocols that required each node to send Θ(|m|) bits, receive Θ(n|m|) bits and be awake for Θ(n) time slots.  相似文献   

8.
The distance graph G(n, 2, 1) is a graph where vertices are identified with twoelement subsets of {1, 2,..., n}, and two vertices are connected by an edge whenever the corresponding subsets have exactly one common element. A random subgraph G p (n, 2, 1) in the Erd?os–Rényi model is obtained by selecting each edge of G(n, 2, 1) with probability p independently of other edges. We find a lower bound on the independence number of the random subgraph G1/2(n, 2, 1).  相似文献   

9.
We consider a game between a group of n pursuers and one evader moving with the same maximum velocity along the 1-skeleton graph of a regular polyhedron. The goal of the paper is finding, for each regular polyhedron M, a number N(M) with the following properties: if nN(M), the group of pursuers wins, while if n < N(M), the evader wins. Part I of the paper is devoted to the case of polyhedra in ?3; Part II will be devoted to the case of ? d , d ≥ 5; and Part III, to the case of ?4.  相似文献   

10.
Recall that Lebesgue’s singular function L(t) is defined as the unique solution to the equation L(t) = qL(2t) + pL(2t ? 1), where p, q > 0, q = 1 ? p, pq. The variables M n = ∫01t n dL(t), n = 0,1,… are called the moments of the function The principal result of this work is \({M_n} = {n^{{{\log }_2}p}}{e^{ - \tau (n)}}(1 + O({n^{ - 0.99}}))\), where the function τ(x) is periodic in log2x with the period 1 and is given as \(\tau (x) = \frac{1}{2}1np + \Gamma '(1)lo{g_2}p + \frac{1}{{1n2}}\frac{\partial }{{\partial z}}L{i_z}( - \frac{q}{p}){|_{z = 1}} + \frac{1}{{1n2}}\sum\nolimits_{k \ne 0} {\Gamma ({z_k})L{i_{{z_k} + 1}}( - \frac{q}{p})} {x^{ - {z_k}}}\), \({z_k} = \frac{{2\pi ik}}{{1n2}}\), k ≠ 0. The proof is based on poissonization and the Mellin transform.  相似文献   

11.
Two new constructions of Steiner quadruple systems S(v, 4, 3) are given. Both preserve resolvability of the original Steiner system and make it possible to control the rank of the resulting system. It is proved that any Steiner system S(v = 2 m , 4, 3) of rank rv ? m + 1 over F2 is resolvable and that all systems of this rank can be constructed in this way. Thus, we find the number of all different Steiner systems of rank r = v ? m + 1.  相似文献   

12.
We initiate a new line of investigation into online property-preserving data reconstruction. Consider a dataset which is assumed to satisfy various (known) structural properties; e.g., it may consist of sorted numbers, or points on a manifold, or vectors in a polyhedral cone, or codewords from an error-correcting code. Because of noise and errors, however, an (unknown) fraction of the data is deemed unsound, i.e., in violation with the expected structural properties. Can one still query into the dataset in an online fashion and be provided data that is always sound? In other words, can one design a filter which, when given a query to any item I in the dataset, returns a sound item J that, although not necessarily in the dataset, differs from I as infrequently as possible. No preprocessing should be allowed and queries should be answered online.We consider the case of a monotone function. Specifically, the dataset encodes a function f:{1,…,n}?? R that is at (unknown) distance ε from monotone, meaning that f can—and must—be modified at ε n places to become monotone.Our main result is a randomized filter that can answer any query in O(log?2 nlog? log?n) time while modifying the function f at only O(ε n) places. The amortized time over n function evaluations is O(log?n). The filter works as stated with probability arbitrarily close to 1. We provide an alternative filter with O(log?n) worst case query time and O(ε nlog?n) function modifications. For reconstructing d-dimensional monotone functions of the form f:{1,…,n} d ? ? R, we present a filter that takes (2 O(d)(log?n)4d?2log?log?n) time per query and modifies at most O(ε n d ) function values (for constant d).  相似文献   

13.
The algebraic immunity of a Boolean function is a parameter that characterizes the possibility to bound this function from above or below by a nonconstant Boolean function of a low algebraic degree. We obtain lower bounds on the algebraic immunity for a class of functions expressed through the inversion operation in the field GF(2 n ), as well as for larger classes of functions defined by their trace forms. In particular, for n ≥ 5, the algebraic immunity of the function Tr n (x ?1) has a lower bound ?2√n + 4? ? 4, which is close enough to the previously obtained upper bound ?√n? + ?n/?√n?? ? 2. We obtain a polynomial algorithm which, give a trace form of a Boolean function f, computes generating sets of functions of degree ≤ d for the following pair of spaces. Each function of the first (linear) space bounds f from below, and each function of the second (affine) space bounds f from above. Moreover, at the output of the algorithm, each function of a generating set is represented both as its trace form and as a polynomial of Boolean variables.  相似文献   

14.
In negation-limited complexity, one considers circuits with a limited number of NOT gates, being motivated by the gap in our understanding of monotone versus general circuit complexity, and hoping to better understand the power of NOT gates. We give improved lower bounds for the size (the number of AND/OR/NOT) of negation-limited circuits computing Parity and for the size of negation-limited inverters. An inverter is a circuit with inputs x 1,…,x n and outputs ¬ x 1,…,¬ x n . We show that: (a) for n=2 r ?1, circuits computing Parity with r?1 NOT gates have size at least 6n?log?2(n+1)?O(1), and (b) for n=2 r ?1, inverters with r NOT gates have size at least 8n?log?2(n+1)?O(1). We derive our bounds above by considering the minimum size of a circuit with at most r NOT gates that computes Parity for sorted inputs x 1???x n . For an arbitrary r, we completely determine the minimum size. It is 2n?r?2 for odd n and 2n?r?1 for even n for ?log?2(n+1)??1≤rn/2, and it is ?3n/2??1 for rn/2. We also determine the minimum size of an inverter for sorted inputs with at most r NOT gates. It is 4n?3r for ?log?2(n+1)?≤rn. In particular, the negation-limited inverter for sorted inputs due to Fischer, which is a core component in all the known constructions of negation-limited inverters, is shown to have the minimum possible size. Our fairly simple lower bound proofs use gate elimination arguments in a somewhat novel way.  相似文献   

15.
An outer-connected dominating set in a graph G = (V, E) is a set of vertices D ? V satisfying the condition that, for each vertex v ? D, vertex v is adjacent to some vertex in D and the subgraph induced by V?D is connected. The outer-connected dominating set problem is to find an outer-connected dominating set with the minimum number of vertices which is denoted by \(\tilde {\gamma }_{c}(G)\). In this paper, we determine \(\tilde {\gamma }_{c}(S(n,k))\), \(\tilde {\gamma }_{c}(S^{+}(n,k))\), \(\tilde {\gamma }_{c}(S^{++}(n,k))\), and \(\tilde {\gamma }_{c}(S_{n})\), where S(n, k), S +(n, k), S ++(n, k), and S n are Sierpi\(\acute {\mathrm {n}}\)ski-like graphs.  相似文献   

16.
We focus on the large field of a hyperbolic potential form, which is characterized by a parameter f, in the framework of the brane-world inflation in Randall-Sundrum-II model. From the observed form of the power spectrum P R (k), the parameter f should be of order 0.1m p to 0.001m p , the brane tension must be in the range λ ~ (1?10)×1057 GeV4, and the energy scale is around V0 1/4 ~ 1015 GeV. We find that the inflationary parameters (n s , r, and dn s /d(ln k) depend only on the number of e-folds N. The compatibility of these parameters with the last Planck measurements is realized with large values of N.  相似文献   

17.
A new representation is proved of the solutions of initial boundary value problems for the equation of the form u xx (x, t) + r(x)u x (x, t) ? q(x)u(x, t) = u tt (x, t) + μ(x)u t (x, t) in the section (under boundary conditions of the 1st, 2nd, or 3rd type in any combination). This representation has the form of the Riemann integral dependent on the x and t over the given section.  相似文献   

18.
The notion of the equivalence of vertex labelings on a given graph is introduced. The equivalence of three bimagic labelings for regular graphs is proved. A particular solution is obtained for the problem of the existence of a 1-vertex bimagic vertex labeling of multipartite graphs, namely, for graphs isomorphic with Kn, n, m. It is proved that the sequence of bi-regular graphs Kn(ij)?=?((Kn???1???M)?+?K1)???(unui)???(unuj) admits 1-vertex bimagic vertex labeling, where ui, uj is any pair of non-adjacent vertices in the graph Kn???1???M, un is a vertex of K1, M is perfect matching of the complete graph Kn???1. It is established that if an r-regular graph G of order n is distance magic, then graph G + G has a 1-vertex bimagic vertex labeling with magic constants (n?+?1)(n?+?r)/2?+?n2 and (n?+?1)(n?+?r)/2?+?nr. Two new types of graphs that do not admit 1-vertex bimagic vertex labelings are defined.  相似文献   

19.
Let Ω = AN be a space of right-sided infinite sequences drawn from a finite alphabet A = {0,1}, N = {1,2,…}. Let ρ(x, yk=1|x k ? y k |2?k be a metric on Ω = AN, and μ the Bernoulli measure on Ω with probabilities p0, p1 > 0, p0 + p1 = 1. Denote by B(x,ω) an open ball of radius r centered at ω. The main result of this paper \(\mu (B(\omega ,r))r + \sum\nolimits_{n = 0}^\infty {\sum\nolimits_{j = 0}^{{2^n} - 1} {{\mu _{n,j}}} } (\omega )\tau ({2^n}r - j)\), where τ(x) = 2min {x,1 ? x}, 0 ≤ x ≤ 1, (τ(x) = 0, if x < 0 or x > 1 ), \({\mu _{n,j}}(\omega ) = (1 - {p_{{\omega _{n + 1}}}})\prod _{k = 1}^n{p_{{\omega _k}}} \oplus {j_k}\), \(j = {j_1}{2^{n - 1}} + {j_2}{2^{n - 2}} + ... + {j_n}\). The family of functions 1, x, τ(2 n r ? j), j = 0,1,…, 2 n ? 1, n = 0,1,…, is the Faber–Schauder system for the space C([0,1]) of continuous functions on [0, 1]. We also obtain the Faber–Schauder expansion for Lebesgue’s singular function, Cezaro curves, and Koch–Peano curves. Article is published in the author’s wording.  相似文献   

20.
The performance of a linear error-detecting code in a symmetric memoryless channel is characterized by its probability of undetected error, which is a function of the channel symbol error probability, involving basic parameters of a code and its weight distribution. However, the code weight distribution is known for relatively few codes since its computation is an NP-hard problem. It should therefore be useful to have criteria for properness and goodness in error detection that do not involve the code weight distribution. In this work we give two such criteria. We show that a binary linear code C of length n and its dual code C of minimum code distance d are proper for error detection whenever d ≥ ?n/2? + 1, and that C is proper in the interval [(n + 1 ? 2d)/(n ? d); 1/2] whenever ?n/3? + 1 ≤ d ≤ ?n/2?. We also provide examples, mostly of Griesmer codes and their duals, that satisfy the above conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号