首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following recent theoretical works on successive Wyner-Ziv coding (WZC), we propose a practical layered Wyner-Ziv video coder using the DCT, nested scalar quantization, and irregular LDPC code based Slepian-Wolf coding (or lossless source coding with side information at the decoder). Our main novelty is to use the base layer of a standard scalable video coder (e.g., MPEG-4/H.26L FGS or H.263+) as the decoder side information and perform layered WZC for quality enhancement. Similar to FGS coding, there is no performance difference between layered and monolithic WZC when the enhancement bitstream is generated in our proposed coder. Using an H.26L coded version as the base layer, experiments indicate that WZC gives slightly worse performance than FGS coding when the channel (for both the base and enhancement layers) is noiseless. However, when the channel is noisy, extensive simulations of video transmission over wireless networks conforming to the CDMA2000 1X standard show that H.26L base layer coding plus Wyner-Ziv enhancement layer coding are more robust against channel errors than H.26L FGS coding. These results demonstrate that layered Wyner-Ziv video coding is a promising new technique for video streaming over wireless networks  相似文献   

2.
This letter proposes an efficient wavelet-based fine Granularity Scalable(FGS)coding scheme,where the base layer is encoded with a newly designed wavelet-based coder,and the entancement layer is encoded with Progressive Fins Granularity Scalable(PFGS)coding.This algorithm involves multi-frame motion compensationk,rate-distortion optimizing strategy with Lagrangian cost function and context-based adaptive arithmetic coding.In order to improve efficiency of the enhancenent layer coding,an improved motion estimation scheme that uses both information from the base layer and the enhancement layer is also proposed in this letter.The wavelet-based coder significantly improves the coding efficiency of the base layer compared with MPEG-4 ASP(Advanced Simple Profile)and H.26L TML9.The PFGS coding is a significant improvement over MPEG-4 FGS coding at the enhancement layer.Experiments show that single layer coding efficiency gain of the proposed scheme is about 2.0-3.0dB and 0.3-1.0dB higher than that of MPEG-4 ASP and H.26L TML9,respectively.The overall coding efficiency gain of the proposed scheme is about 4.0-5.0dB higher than that of MPEG04 FGS.  相似文献   

3.
Distributed Joint Source-Channel Coding of Video Using Raptor Codes   总被引:1,自引:0,他引:1  
Extending recent works on distributed source coding, this paper considers distributed source-channel coding and targets at the important application of scalable video transmission over wireless networks. The idea is to use a single channel code for both video compression (via Slepian-Wolf coding) and packet loss protection. First, we provide a theoretical code design framework for distributed joint source-channel coding over erasure channels and then apply it to the targeted video application. The resulting video coder is based on a cross-layer design where video compression and protection are performed jointly. We choose Raptor codes - the best approximation to a digital fountain - and address in detail both encoder and decoder designs. Using the received packets together with a correlated video available at the decoder as side information, we devise a new iterative soft-decision decoder for joint Raptor decoding. Simulation results show that, compared to one separate design using Slepian-Wolf compression plus erasure protection and another based on FGS coding plus erasure protection, the proposed joint design provides better video quality at the same number of transmitted packets. Our work represents the first in capitalizing the latest in distributed source coding and near-capacity channel coding for robust video transmission over erasure channels.  相似文献   

4.
Distributed Video Coding   总被引:23,自引:0,他引:23  
Distributed coding is a new paradigm for video compression, based on Slepian and Wolf's and Wyner and Ziv's information-theoretic results from the 1970s. This paper reviews the recent development of practical distributed video coding schemes. Wyner-Ziv coding, i.e., lossy compression with receiver side information, enables low-complexity video encoding where the bulk of the computation is shifted to the decoder. Since the interframe dependence of the video sequence is exploited only at the decoder, an intraframe encoder can be combined with an interframe decoder. The rate-distortion performance is superior to conventional intraframe coding, but there is still a gap relative to conventional motion-compensated interframe coding. Wyner-Ziv coding is naturally robust against transmission errors and can be used for joint source-channel coding. A Wyner-Ziv MPEG encoder that protects the video waveform rather than the compressed bit stream achieves graceful degradation under deteriorating channel conditions without a layered signal representation.  相似文献   

5.
基于H.26L的精细度可伸缩视频编码   总被引:5,自引:0,他引:5  
提出了一种基于H.26L精细度可伸缩(fine granularity scalability)视频编码方案,称为EFGS-H.26L。在该方案中,以MPEG-4的FGS为基础构造了一种新的可伸缩结构(EFGS,enhanced fine granularity scalability),在EFGS结构中,基本层采用H.26L编码,增强层采用类似于JPEG2000的基于上下文的位平面编码。由于H.26L优良的编码性能,使得基本层的编码效率大大提高,为了提高增强层的编码效率,首先把残余图像按子带的顺序重新排列,这样就可以利用子带系数的相关性来实现冗余信息消除。JPEG2000标准中的EBCOT算法已经被证明是非常高效的位平面编码方法,所以对重排后的DCT系数采用一种类似于JPEG2000的基于上下文的位平面编码方法。实验结果证明,在高比特率时,本文提出的精细度可伸缩编码方案编码效率比MPEG-4中的FGS提高3.0dB左右。  相似文献   

6.
FGS编码方法具有细粒度的可扩展能力,能很好地适应网络带宽的动态变化,被认为是一种适合于网络视频传输的编码方案.但现有的MPEG-4 FGS编码标准效率低,限制了其进一步的推广应用.因此,本文面向视频应用中常见的头肩序列图像,实现了一种质量可精细扩展的视频编码方法.该方法采用H.26L对基本层进行编码,采用基于DCT变换的SPIHT方法对原始图像与基本层重建图像之间的残差进行编码得到增强层的码流.然后将复杂背景下的人脸检测与跟踪技术与选择性增强技术结合起来,对人脸区域优先编码.实验结果表明,该方法不仅编码效率高于现有的MPEG-4 FGS标准,码流具有可精细扩展的特性,还可以选择性地提高人脸区域重建图像的主观感受水平.  相似文献   

7.
Traditional video coders use the previous frame to perform motion estimation and compensation. Though they are less complex and have minimum coding delays, these coders lose their efficiency when subjected to scalability requirements. Recent 3D wavelet coders using lifting schemes offer high compression efficiency and scalability without significant loss in performance. The main drawback of 3D coders is that they process several frames at a time. This introduces additional delay, which makes them less suitable for real time applications.In this work, we propose a novel scheme to minimize drift in scalable wavelet based video coding, which gives a balanced performance between compression efficiency and reconstructed quality with less drift. Our drift control mechanism maintains two frame buffers in the encoder and decoder; one that is based on the base layer and one that is based on the base plus enhancement layers. Drift control is achieved by switching between these two buffers for motion estimation and compensation. Our prediction is initially based on the base plus enhancement layers buffer, which inherently introduces drift in the system if a part of the enhancement layer is not available at the receiver. A measure of drift is computed based on the channel information and a threshold is set. When the measure exceeds the threshold, i.e., when drift becomes significant, we switch the prediction to be based on the base layer buffer, which is always available to the receiver. We also developed an adaptive scheme with additional computation overhead at the encoder to decide the switching instance. The performance of the threshold case that needs fewer computations is comparable with the adaptive scheme. Our coder offers high compression efficiency and sustained video quality for variable bit rate wireless channels. This proves that we need not completely eliminate drift and decrease compression efficiency to get better received video quality.  相似文献   

8.
Feedback-based error control for mobile video transmission   总被引:25,自引:0,他引:25  
We review feedback-based low bit-rate video coding techniques for robust transmission in mobile multimedia networks. For error control on the source coding level, each decoder has to make provisions for error detection, resynchronization, and error concealment, and we review techniques suitable for that purpose. Further, techniques are discussed for intelligent processing of acknowledgment information by the coding control to adapt the source coder to the channel. We review and compare error tracking, error confinement, and reference picture selection techniques for channel-adaptive source coding. For comparison of these techniques, a system for transmitting low bit-rate video over a wireless channel is presented and the performance is evaluated for a range of transmission conditions. We also show how feedback-based source coding can be employed in conjunction with precompressed video stored on a media server. The techniques discussed are applicable to a wide variety of interframe video schemes, including various video coding standards. Several of the techniques have been incorporated into the H.263 video compression standard, and this standard is used as an example throughout  相似文献   

9.
PRISM: A video coding paradigm with motion estimation at the decoder.   总被引:4,自引:0,他引:4  
We describe PRISM, a video coding paradigm based on the principles of lossy distributed compression (also called source coding with side information or Wyner-Ziv coding) from multiuser information theory. PRISM represents a major departure from conventional video coding architectures (e.g., the MPEGx, H.26x families) that are based on motion-compensated predictive coding, with the goal of addressing some of their architectural limitations. PRISM allows for two key architectural enhancements: (1) inbuilt robustness to "drift" between encoder and decoder and (2) the feasibility of a flexible distribution of computational complexity between encoder and decoder. Specifically, PRISM enables transfer of the computationally expensive video encoder motion-search module to the video decoder. Based on this capability, we consider an instance of PRISM corresponding to a near reversal in codec complexities with respect to today's codecs (leading to a novel light encoder and heavy decoder paradigm), in this paper. We present encouraging preliminary results on real-world video sequences, particularly in the realm of transmission losses, where PRISM exhibits the characteristic of rapid recovery, in contrast to contemporary codecs. This renders PRISM as an attractive candidate for wireless video applications.  相似文献   

10.
11.
In addition to coding efficiency, the scalable extension of H.264/AVC provides good functionality for video adaptation in heterogeneous environments. Fine grain scalability (FGS) is a technique to extract video bitstream at the finest quality level under the given bandwidth. In this paper, an architecture of FGS encoder with low external memory bandwidth and low hardware cost is proposed. Up to 99% of bandwidth reduction can be attained by the proposed scan bucket algorithm, early context modeling with context reduction, and first scan pre-encoding. The area-efficient hardware architecture is implemented by layer-wise hardware reuse. Besides, three design strategies for enhancement layer coder are explored so that the trade-off between external memory bandwidth and silicon area is allowed. The proposed hardware architecture can real-time encode HDTV 1920×1080 video with two FGS enhancement layers at 200 MHz working frequency, or HDTV 1280×720 video with three FGS enhancement layers at 130 MHz working frequency.  相似文献   

12.
精细的可伸缩性视频编码中容错技术的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
阎蓉  陶然  王越  吴枫  李世鹏 《电子学报》2002,30(1):102-104
 精细的可伸缩性视频编码生成的增强层码流在有误码的信道中传输时,正确解码的比特数由信道误码率决定,而不是由信道带宽决定,这将严重影响图像质量.本文提出了一种新的分级的增强层码流结构,在这种新的增强层码流中加入各种同步符,将码流分为许多不同的段.当码流在传输过程中出现错误时,只有发生错误的那段码流不能解码,从而有效地减少了传输错误的影响.在MPEG-4的FGS上的实验结果表明我们提出的增强层码流结构比原来的FGS增强层码流结构有更好的鲁棒性.  相似文献   

13.
JPEG 2000 is the novel ISO standard for image and video coding. Besides its improved coding efficiency, it also provides a few error resilience tools in order to limit the effect of errors in the codestream, which can occur when the compressed image or video data are transmitted over an error-prone channel, as typically occurs in wireless communication scenarios. However, for very harsh channels, these tools often do not provide an adequate degree of error protection. In this paper, we propose a novel error-resilience tool for JPEG 2000, based on the concept of ternary arithmetic coders employing a forbidden symbol. Such coders introduce a controlled degree of redundancy during the encoding process, which can be exploited at the decoder side in order to detect and correct errors. We propose a maximum likelihood and a maximum a posteriori context-based decoder, specifically tailored to the JPEG 2000 arithmetic coder, which are able to carry out both hard and soft decoding of a corrupted code-stream. The proposed decoder extends the JPEG 2000 capabilities in error-prone scenarios, without violating the standard syntax. Extensive simulations on video sequences show that the proposed decoders largely outperform the standard in terms of PSNR and visual quality.  相似文献   

14.
The problem of enabling robust video transmission over lossy networks has become increasingly important because of the growing interest in video delivery over unreliable channels such as wireless networks. The more the coding process relies on an intensive use of prediction to improve the coding gain, the more the reconstructed sequence proves to be sensitive to information losses. As a matter of fact, it is necessary to introduce some redundant data in order to increase the robustness of the coded bit stream. A possible solution can be found filling a matrix structure with RTP packets and applying a Forward Error Correction (FEC) code on its rows. However, the matrix size and the chosen FEC code affect the performance of the coding system. The paper proposes a novel adaptation technique that tunes the amount of redundant information included in the packet stream and differs from previously proposed solutions since it relies on the percentage of null quantized transform coefficients in place of the activity or the Mean Square Error (MSE). This strategy is then integrated in a joint source-channel coder rate allocation algorithm that shares the available bits between the H.264/AVC coder and the channel coder according to the significance of the frame in the decoding process. Experimental results show that the presented approach significantly improves the quality of the reconstructed sequences at the decoder with respect to activity-based strategies and requires a low computational complexity.  相似文献   

15.
Distributed Video Coding (DVC) is a new video coding paradigm, which mainly exploits the source statistics at the decoder based on the availability of decoder side information. One approach to DVC is feedback channel based Transform Domain Wyner-Ziv (TDWZ) video coding. The efficiency of current TDWZ video coding trails that of conventional video coding solutions, mainly due to the quality of side information, inaccurate noise modeling and loss in the final coding step. The major goal of this paper is to enhance the accuracy of the noise modeling, which is one of the most important aspects influencing the coding performance of DVC. A TDWZ video decoder with a novel cross-band based adaptive noise model is proposed, and a noise residue refinement scheme is introduced to successively update the estimated noise residue for noise modeling after each bit-plane. Experimental results show that the proposed noise model and noise residue refinement scheme can improve the rate-distortion (RD) performance of TDWZ video coding significantly. The quality of the side information modeling is also evaluated by a measure of the ideal code length.  相似文献   

16.
一种空间域Wyner-Ziv视频编码系统的性能改进算法   总被引:1,自引:0,他引:1       下载免费PDF全文
干宗良  齐丽娜  朱秀昌 《电子学报》2007,35(10):2014-2018
分布式视频编码是建立在Slepian-Wolf和Wyner-Ziv信息编码理论基础上的全新视频编码框架,具有编码复杂度低,编码效率较高,抗误码性能好的特点.本文首先简单介绍了一种典型的分布式视频编码实现方案——空间域Wyner-Ziv视频编码,随后提出一种空间域Wyner-Ziv视频编码系统的性能改进算法,该算法在不增加编码复杂度的基础上,在解码端利用双向运动估计预测获取更高质量的边信息,同时采用基于Huber-Markov随机场约束的联合迭代解码算法重建图像.实验结果表明,在相同的输出码流情况下,本文改进算法在解码端重建图像的峰值信噪比与空间域Wyner-Ziv视频编码算法相比平均提高2dB,并且主观效果有所改善.  相似文献   

17.
In the context of low-cost video encoding, distributed video coding (DVC) has recently emerged as a potential candidate for uplink-oriented applications. This paper builds on a concept of correlation channel (CC) modeling, which expresses the correlation noise as being statistically dependent on the side information (SI). Compared with classical side-information-independent (SII) noise modeling adopted in current DVC solutions, it is theoretically proven that side-information-dependent (SID) modeling improves the Wyner-Ziv coding performance. Anchored in this finding, this paper proposes a novel algorithm for online estimation of the SID CC parameters based on already decoded information. The proposed algorithm enables bit-plane-by-bit-plane successive refinement of the channel estimation leading to progressively improved accuracy. Additionally, the proposed algorithm is included in a novel DVC architecture that employs a competitive hash-based motion estimation technique to generate high-quality SI at the decoder. Experimental results corroborate our theoretical gains and validate the accuracy of the channel estimation algorithm. The performance assessment of the proposed architecture shows remarkable and consistent coding gains over a germane group of state-of-the-art distributed and standard video codecs, even under strenuous conditions, i.e., large groups of pictures and highly irregular motion content.  相似文献   

18.
H.264/AVC will be an essential component in emerging wireless video applications thanks to its excellent compression efficiency and network-friendly design. However, a video coding standard itself is only one component within the application and transmission environment. Its effectiveness strongly depends on the selection of appropriate modes and parameters at the encoder, at the decoder, as well as in the network. In this paper we introduce the features of the H.264/AVC coding standard that make it suitable for wireless video applications, including features for error resilience, bit rate adaptation, integration into packet networks, interoperability, and buffering considerations. Modern wireless networks provide many different means to adapt quality of service, such as forward error correction methods on different layers and end-to-end or link layer retransmission protocols. The applicability of all these encoding and network features depends on application constraints, such as the maximum tolerable delay, the possibility of online encoding, and the availability of feedback and cross-layer information. We discuss the use of different coding and transport related features for different applications, namely video telephony, video conferencing, video streaming, download-and-play, and video broadcasting. Guidelines for the selection of appropriate video coding tools, video encoder and decoder settings, as well as transport and network parameters are provided and justified. References to relevant research publications and standardization contributions are given.  相似文献   

19.
In this paper, we develop an approach toward joint source-channel coding for motion-compensated DCT-based scalable video coding and transmission. A framework for the optimal selection of the source and channel coding rates over all scalable layers is presented such that the overall distortion is minimized. The algorithm utilizes universal rate distortion characteristics which are obtained experimentally and show the sensitivity of the source encoder and decoder to channel errors. The proposed algorithm allocates the available bit rate between scalable layers and, within each layer, between source and channel coding. We present the results of this rate allocation algorithm for video transmission over a wireless channel using the H.263 Version 2 signal-to-noise ratio (SNR) scalable codec for source coding and rate-compatible punctured convolutional (RCPC) codes for channel coding. We discuss the performance of the algorithm with respect to the channel conditions, coding methodologies, layer rates, and number of layers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号