首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
带判决反馈的盲最大似然序列估计   总被引:1,自引:1,他引:0  
本文提出了一种新型的带有判决反馈的减小状态最大似然序列估计RSSDFPSP,新算法带有两个信道估值器并且可以工作在盲环境下.使用最大似然序列估计(MLSE)来处理信道冲激响应的前导干扰及主径,反馈滤波器处理后尾干扰,并且用PerSurvivingProcesing(PSP)算法来得到MLSE部分的信道冲激响应,信道估值器2得到后尾干扰.计算机模拟表明,这种RSSDFPSP方案在减小MLSE的计算复杂度的同时能最大限度地得到MLSE的性能,是MLSE在计算复杂度与性能之间的较好折中.  相似文献   

2.
The paper investigates adaptive equalization of time-dispersive mobile radio fading channels and develops a robust high performance Bayesian decision feedback equalizer (DFE). The characteristics and implementation aspects of this Bayesian DFE are analyzed, and its performance is compared with those of the conventional symbol or fractional spaced DFE and the maximum likelihood sequence estimator (MLSE). In terms of computational complexity, the adaptive Bayesian DFE is slightly more complex than the conventional DFE but is much simpler than the adaptive MLSE. In terms of error rate in symbol detection, the adaptive Bayesian DFE outperforms the conventional DFE dramatically. Moreover, for severely fading multipath channels, the adaptive MLSE exhibits significant degradation from the theoretical optimal performance and becomes inferior to the adaptive Bayesian DFE  相似文献   

3.
A decision-feedback equalizer (DFE) is proposed as a prefilter which limits the complexity of a maximum-likelihood sequence estimator (MLSE) implemented by the Viterbi algorithm (VA) for channels having a long impulse response. By imbedding a DFE into the structure of the MLSE, the overall impulse response of the system is truncated to a short duration. With this practical receiver, a compromise may be made between performance and complexity by properly choosing the duration of a desired impulse response. A technique is also developed to estimate the performance of the receiver numerically, taking into account the effect of incorrect decision feedback on the VA. Analysis and computer simulation over a single-pole channel show that the proposed scheme can reduce the complexity of the MLSE while retaining much of its performance advantages.  相似文献   

4.
This paper presents reduced-complexity equalization techniques for broadband wireless communications, both outdoors (fixed or mobile wireless asynchronous transfer mode (ATM) networks) and indoors [high-speed local-area networks (LANs)]. The two basic equalization techniques investigated are decision-feedback equalization (FE) and delayed decision-feedback sequence estimation (DDFSE). We consider the use of these techniques in highly dispersive channels, where the impulse response can last up to 100 symbol periods. The challenge is in minimizing the complexity as well as providing fast equalizer start-up for transmissions of short packets. We propose two techniques which, taken together, provide an answer to this challenge. One is an open-loop timing recovery approach (for both DFE and DDFSE) which can be executed prior to equalization; the other is a modified DFE structure for precanceling postcursors without requiring training of the feedback filter. Simulation results are presented to demonstrate the feasibility of the proposed techniques for both indoor and outdoor multipath channel models. The proposed open-loop timing recovery technique plays a crucial role in maximizing the performance of DFE and DDFSE with short feedforward spans (the feedforward section of DDFSE is a Viterbi sequence estimator). A feedforward span of only five is quite sufficient for channels with symbol rate-delay spread products approaching 100. The modified DFE structure speeds up the training process for these channels by 10-20 times, compared to the conventional structure without postcursor precancellation. The proposed techniques offer the possibility of practical equalization for broadband wireless systems  相似文献   

5.
An efficient bidirectional arbitrated decision feedback (BAD) equalizer is presented in single-carrier block transmission system in the Two-Ray multipath fading channels, where the output from the bidirectional equalizers are combined together directly using maximal ratio combining (MRC) rule to improve the signal-to-noise ratio (SNR) before demodulation. The computational complexity of the BAD equalizer presented is linear with the channel length, which is the same as conventional decision feedback equalizer (DFE) and is significantly lower than that of conventional BAD equalizer as well as the maximum likelihood (ML) algorithm. While the performance of the new scheme depends on the specific channel characteristics, it is shown by simulation results that the performance of the new BAD can surpass the one of DFE dramatically in the minimum or non-minimum phase Two-Ray multipath fading channels.  相似文献   

6.
The decision feedback equalizer (DFE), three-level eye, and maximum-likelihood sequence estimator (MLSE) decision schemes for frequency demodulation of 16-kb/s GMSK signals are evaluated. Laboratory experimental results on bit error rate (BER) and block error rate (BKER) performances are presented. In additive white Gaussian noise channels, two-bit DFE achieves the best BER performance, whereas MLSE is the best for cochannel interference-limited channels. BKER performance was also examined. The three-level eye decision is a bit-by-bit decision, and thus has superior performance because there is no error propagation. In fading environments, however, this superiority tends to diminish because bursty errors due to deep fades predominate rather than error propagation effects. Some of the laboratory experimental results have been confirmed with field experiments at a 1.45-GHz carrier frequency  相似文献   

7.
滑动窗快速横向滤波的自适应判决反馈均衡器算法   总被引:1,自引:0,他引:1  
本文提出了一种基于滑动窗广义多路快速横向滤波(SWFTF)的自适应判决反馈均衡器(DFF)算法,它具有快速跟踪性能,故可用于快速时变多径衰落的信道。文中推导了SWFTF-DFE算法。在数字移动通信信道模型上,利用计算机模拟,在均方误差和误码率特性方面与其它均衡器算法进行了比较。  相似文献   

8.
We consider a practical maximum-likelihood sequence estimation (MLSE) equalizer on multipath fading channels in conjunction with an adaptive channel estimator consisting of a least mean square (LMS) estimator and a linear channel predictor, instead of assuming perfect channel estimates. A new LMS estimator model is proposed which can accurately characterize the statistical behavior of the LMS estimator over multipath fading channels. Based on this model, a new upper-bound on block error rate is derived under the consideration of imperfect channel estimates. Computer simulations verify that our analytical results can correctly predict the real system performance and are applicable over a wide range of the step size parameter of the LMS estimator  相似文献   

9.
A new transceiver for data transmission over multipath fading channels employing precoding and differential detection is investigated. This precoding scheme effectively functions as a decision feedback equalizer (DFE) for differentially coherent demodulation. The main advantage of the proposed scheme over the conventional DFE is its ability to compensate for fast channel phase variations  相似文献   

10.
A communication scheme using binary FM with noncoherent limiter-discriminator detection has been well known. Up to now, the improvement of bit error rate at the receiver side has been carried out through the bandwidth optimization of the IF filter, the decision feedback equalization (DFE), or simple two-state maximum likelihood sequence estimator (MLSE). This channel is inherently the intersymbol interference (ISI) channel due to the premodulation baseband filtering as well as the narrowband IF filtering. So the sequence estimation scheme using the Viterbi algorithm can be applied successfully, although the channel is not additive white Gaussian and maximum likelihood in the strict sense. In this paper, through computer simulations, we examine the actual BER improvement of the sequence estimation scheme with multiple-state trellis especially for MSK and GMSK signals. We mainly consider static AWGN and frequency nonselective Rician fading channels. Consequently, by adjusting the IF filter bandwidth, very large estimation gains are obtained compared to the conventional DFE or MLSE detector for AWGN and Rician fading channels. This scheme does not produce large demodulation delay and is implemented only by adding the signal processing part to the final stage of the receiver. This scheme seems to be very useful for any applications including satellite mobile channels  相似文献   

11.
An approach to reduced-complexity detection of partial response continuous phase modulation (CPM) on a linear multipath channel is presented. The method, referred to as decision feedback sequence estimation (DFSE), is based on a conventional Viterbi algorithm (VA) using a reduced-state trellis combined with decision feedback (DF). By varying the number of states in the VA, the receiver structure can be changed gradually from a DF receiver to the optimal maximum-likelihood sequence estimator (MLSE). In this way different tradeoffs between performance and complexity can be obtained. Results on the receiver performance, based on minimum distance calculations and bit error rate simulations, are given for Gaussian minimum-shift keying modulation on typical mobile radio channels. It is shown that for channels with a long memory, a significant complexity reduction can be achieved at the cost of a moderate degradation in performance  相似文献   

12.
This paper proposes an adaptive maximum-likelihood sequence estimation (MLSE) by means of combined equalization and decoding, i.e., adaptive combined MLSE, which employs separate channel estimation for respective states in the Viterbi algorithm. First, an approximate metric including channel estimation is derived analytically for this proposed adaptive combined MLSE. Secondly, procedures to accomplish blind equalization are investigated for the proposed MLSE. Finally, its excellent BER performance on fast time-varying fading channels is confirmed by computer simulation, when the proposed MLSE operates as a blind equalizer  相似文献   

13.
A decision feedback equalizer with time-reversal structure   总被引:1,自引:0,他引:1  
This work describes the use of a receiver with a time-reversal structure for low-complexity decision feedback equalization of slowly fading dispersive indoor radio channels. Time-reversal is done by storing each block of received signal samples in a buffer and reversing the sequential order of the signal samples in time prior to equalization. As a result, the equivalent channel impulse response as seen by the equalizer is a time-reverse of the actual channel impulse response. Selective time-reversal operation, therefore, allows a decision feedback equalizer (DFE) with a small number of forward filter taps to perform equally well for both minimum-phase and maximum-phase channel characteristics. The author evaluates the theoretical performance bounds for such a receiver and quantifies the possible performance improvement for discrete multipath channels with Rayleigh fading statistics. Two extreme cases of DFE examples are considered: an infinite-length DFE; and a DFE with a single forward filter tap. Optimum burst and symbol timing recovery is addressed and several practical schemes are suggested. Simulation results are presented. The combined use of equalization and diversity reception is considered  相似文献   

14.
By embedding a decision-feedback equalizer (DFE) into the structure of a maximum-likelihood sequence estimator (MLSE), an adaptive combined DFE/MLSE scheme is proposed. In this combined DFE/MLSE, the embedded DFE has three functions: (i) prefiltering the received signals and truncating the equivalent channel response into the desired one, (ii) compensating for channel distortions, and (iii) providing the MLSE detector with predicted values of input signals. Since the embedded MLSE detector operates on the predicted signals the detected symbols at the output of the DFE/MLSE do not suffer any delay and can be directly fed back into the embedded DFE so that the error propagation, which usually takes place in a conventional DFE, can be greatly reduced. Analytical and simulation results indicate that the performance is significantly improved by the DFE/MLSE compared to the conventional DFE while its computation complexity is much less than that of the conventional MLSE receiver. The combined DFE/MLSE can use different adaptive structures (block-updating, sliding window updating or symbol-by-symbol updating) to meet different performance objectives. Moreover, the proposed DFE/MLSE provides a trade-off between performance and complexity with a parameter m representing the MLSE detection depth as well as the number of predicting steps of the embedded DFE. For some particular values of m, this scheme is capable of emulating the conventional DFE, MLSE-VA, adaptive LE-MLSE equalizer, adaptive DDFSE, and adaptive BDFE without detection delay  相似文献   

15.
To increase wireless system capacity using co-channel signals and multiple receiver antennas, we develop the partitioned Viterbi algorithm (PVA). The PVA estimation complexity increases linearly with each additional co-channel signal rather than exponentially as it does with joint maximum-likelihood sequence estimation (MLSE). The estimation problem involves multiple signals simultaneously transmitted and observed through slow-fading, frequency-selective channels. Although transmission is assumed to be in bursts according to a time-division multiple-access scheme, more than one signal can occupy the same time and frequency slot (these signals are referred to as “co-channel” signals). Separation and estimation of the symbol bursts is accomplished by exploiting channel differences, PVA estimation consists of a set of Viterbi detectors, one per signal, that operate in parallel with cross-coupling to allow approximate interference cancellation by means of tentative decisions. The forward filter of a decision feedback equalizer (DFE) is used to “prefilter” received signals prior to PVA estimation. Prefiltering delays the energy of interfering signals so that tentative decisions become reliable enough to use. Simulation results show PVA performance remains near-optimal with respect to the performance of joint MLSE  相似文献   

16.
We evaluate and compare several data detection schemes used in GSM systems. In particular, we compare the performance of decision feedback equalization (DFE) and nonlinear data directed estimation (NDDE) to that of maximum likelihood sequence estimation (MLSE). Establishing the performance of the basic NDDE detector is a first step in investigating the applicability of block transmission techniques to GSM systems. Our simulation results, obtained both for fading multipath channels and adjacent- and co-channel interference scenarios, suggest that the NDDE offers certain performance advantages over the DFE, and the performance of both detectors is comparable to that of the MLSE for the SNR region of interest in practical systems. Thus, they both represent viable alternatives to the MLSE detector  相似文献   

17.
In this paper, novel and yet simple techniques are presented to minimize the error propagation caused by the large precursors and postcursors of the decision feedback equalizer (DFE) in 8VSB DTV system. A technique that selects a reference tap (symbol timing of DFE) from an estimated channel impulse response (CIR) is presented to minimize the effect of the large precursors. Another technique that selects the reference tap position, i.e., decision delay in a feedforward filter (FFF), from the estimated CIR and the amplitude of the selected reference tap is proposed to minimize the effect of large postcursors. The combined structure of a feedback filter (FBF) and Viterbi decoder for use in 8VSB DTV system is also proposed to replace the past unreliable decision symbols in FBF as well as to reduce the decision error probability. Simulation results show that our proposed DFE can prevent effectively the error propagation, in particular, by changing the reference tap and its position in FFF according to the channel condition. It is also shown that an echo removing capability of the proposed DFE, where 400 and 620taps are used for the FFF and FBF, respectively, is greater than that of conventional DFEs by about -20 mus in the single pre-echo of -10 dB channel and by about 10 mus in the single post-echo of -1 dB channel  相似文献   

18.
A reduced-state sequence estimator for linear intersymbol interference channels is described. The estimator uses a conventional Viterbi algorithm with decision feedback to search a reduced-state subset trellis that is constructed using set-partitioning principles. The complexity of maximum-likelihood sequence estimation (MLSE) due to the length of the channel memory and the size of the signal set is systematically reduced. An error probability analysis shows that a good performance/complexity tradeoff can be obtained. In particular, the results indicate that the required complexity to achieve the performance of MLSE is independent of the size of the signal set for large enough signal sets. Simulation results are provided for two partial-response systems. A simple technique for quadrature partial-response signaling (QPRS) is described that eliminates the quasicatastrophic nature of the ML trellis  相似文献   

19.
Adaptive equalization for TDMA digital mobile radio   总被引:3,自引:0,他引:3  
Adaptive equalization for a TDMA (time-division multiple-access) digital cellular system is discussed. A survey of adaptive equalization techniques that includes their performance characteristics and limitations and their implementation complexity is presented. The design of adaptive equalization algorithms for a narrowband TDMA system is considered. It is concluded that, on the basis of implementation complexity and performance in the presence of multipath distortion and signal fading, MLSE (maximum-likelihood sequence estimation) and DFE (decision feedback equalization) are viable equalization methods for mobile radio  相似文献   

20.
This paper presents two equalizer structures for trellis-coded continuous phase modulation (TC-CPM) on multipath fading intersymbol interference (ISI) channels. An equivalent discrete-time (DT) model is developed by combining the tapped-delay-line (TDL) model of the frequency-selective channel and by oversampling at the receiver. The (noninterleaved) fractionally spaced maximum-likelihood sequence estimation (MLSE) equalizer performs continuous phase modulation (CPM) demodulation, trellis-coded modulation (TCM) decoding, and channel equalization by exploiting the finite state nature of the ISI-corrupted TC-CPM signal. Both simulation and analytical results show diversity-like improvement when performing joint MLSE decoding and equalization. For the interleaved soft-output equalizer, the soft symbol metric is delivered to the TCM decoder by using a forward and backward recursion algorithm. Three variants of the soft-output equalizer are examined. We conclude that the backward recursion is essential to partial response CPM schemes, and with moderate complexity, the soft-output equalizer can have a substantial advantage over a noninterleaved MLSE equalizer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号