首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heat capacity of GdVO4 has been determined by adiabatic calorimetry in the range 5–345 K. The present experimental data and earlier results have been used to evaluate the thermodynamic functions of gadolinium orthovanadate (C p 0(T), S 0(T), H 0(T) − H 0(0), and Φ0(T)) as functions of temperature (5–350 K). Its Gibbs energy of formation is determined to be Δf G 0(GdVO4, 298.15 K) = −1684.5 ± 1.6 kJ/mol.  相似文献   

2.
The heat capacity of Cu5SmSe4 has been measured from 80 to 300 K. The results have been used to assess the main thermodynamic functions of Cu5SmSe4: entropy (S 0(T) − S 0(0)), enthalpy increment (H 0(T) − H 0(0)), and reduced Gibbs energy (Φ0(T)).  相似文献   

3.
The heat capacity of crystalline NaZr2(PO4)3 was measured between 7 and 340 K by adiabatic calorimetry. The results were used to calculate the thermodynamic functionsC p 0 ,H 0(T) -H 0(0),S 0(T), andG 0(T) -H 0(0) in the range 0-340 K. The absolute entropy was found to be S0NaZr2(PO4)3, cr, 298.15 K) = 327.1 ±1.0 J/(mol K), and the standard entropy of formation ΔfS0(NaZr2(PO4)3, cr, 298.15 K) = -1101±1 J/(mol K). Solution calorimetry was used to determine the standard enthalpy of formation, Δf H 0(NaZr2(PO4)3, cr, 298.15 K) = -5236 ±5 kJ/mol. By combining the data obtained by the two techniques, the standard Gibbs energy of formation was determined to be ΔfG0(NaZr2(PO4)3, cr, 298.15 K) = -4908 ±5 kJ/mol.  相似文献   

4.
The heat capacity of ScVO4 has been determined by adiabatic calorimetry at temperatures from 14.52 to 347.13 K, and smoothed heat capacity data have been used to evaluate its thermodynamic functions (entropy, enthalpy increment, and reduced Gibbs energy). At 298.15 K, the thermodynamic functions of scandium orthovanadate are C p 0(298.15 K) = 110.5 ± 0.1 J/(mol K), S 0(298.15 K) = 110.9 ± 0.1 J/(mol K), H 0(298.15 K) − H 0(0) = 18.53 ± 0.01 kJ/mol, and Φ0(298.15 K) = −[G 0(298.15 K)/298.15] = 48.75 ± 0.12 J/(mol K). The calculated Gibbs energy of formation of scandium orthovanadate from its constituent elements is Δf G 0(ScVO4, 298.15 K) = −1644.0 ± 2.2 kJ/mol.  相似文献   

5.
The heat capacities of lanthanum and lutetium orthovanadates have been measured at temperatures from 7 to 345 K using an adiabatic calorimeter. No anomalies have been detected in the heat capacity data. The thermodynamic functions (C p 0(T), S 0(T), and H 0(T) − H 0(0)) of the two compounds have been calculated in the temperature range studied, and their Debye characteristic temperatures have been estimated.  相似文献   

6.
Gd2Sn2O7 gadolinium stannate with the pyrochlore structure has been prepared by solid-state reaction and its high-temperature heat capacity has been determined by differential scanning calorimetry in the temperature range 350–1020 K. The Cp(T) data are shown to be well represented by the classic Maier–Kelley equation. The experimental Cp(T) data have been used to evaluate the thermodynamic functions of gadolinium stannate: enthalpy increment H°(T)–H°(339 K), entropy change S°(T)–S°(339 K), and reduced Gibbs energy Ф°(Т).  相似文献   

7.
Tb2Sn2O7 has been prepared by solid-state reaction in air at 1473 K over a period of 200 h and its isobaric heat capacity has been studied experimentally in the range 350–1073 K. The C p(T) data for this compound have no extrema and are well represented by the classic Maier–Kelley equation. The experimental C p(T) data have been used to evaluate the thermodynamic properties of terbium stannate (pyrochlore structure): enthalpy increment H°(T)–H°(350 K), entropy change S°(T)–S°(350 K), and reduced Gibbs energy Ф°(Т).  相似文献   

8.
Based on the Arrhenius equation, a method to calculate the activation energy from the resistance transition is proposed for high temperature superconductors. This method is applied to the Y-based superconductors. The activation energy is found to be U(T,H)∼(1−T/T c )4.8(H/H 0)−3.8 of YBCO crystal, and U(T,H)∼(1−T/T c )3.3(H/H 0)−2.2 of Er doped MTG YBCO crystal, respectively. With the obtained activation energy U(T,H), the lower part of the experimental curve ρ(T,H) and its derivative can be reproduced.   相似文献   

9.
The Dy2Ge2O7 and Ho2Ge2O7 pyrogermanates have been prepared by solid-state reactions in several sequential firing steps in the temperature range 1237–1473 K using stoichiometric mixtures of Dy2O3 (or Ho2O3) and GeO2. The heat capacity of the synthesized germanates has been determined as a function of temperature by differential scanning calorimetry in the range 350–1000 K. The experimentally determined C p (T) curves of the dysprosium and holmium germanates have no anomalies and are well represented by the Maier–Kelley equation. The experimental C p (T) data have been used to evaluate the thermodynamic functions of the Dy2Ge2O7 and Ho2Ge2O7 pyrogermanates: enthalpy increment H°(T)–H°(350 K), entropy change S°(T)–S°(350 K), and reduced Gibbs energy Ф°(T).  相似文献   

10.
The lateral unit cell parameter in nanodimensional La0.67Ca0.33MnO3 (LCMO) films grown on (001)-oriented LaAlO3 substrates is significantly (approximately 4%) smaller than the value measured along the normal to the substrate plane. At T < 140 K, the temperature dependence of the resistivity ρ of LCMO films follows the relation ρ − ρ (T = 4.2 K) ≈ρ2(H)T 4.5, where ρ2 is independent of the temperature but decreases with increasing magnetic field H. It is shown that this decrease is related both to a decay of the spin waves in ferromagnetic domains and to the transformation of antiferromagnetic phase inclusions into ferromagnetic ones.  相似文献   

11.
The structural, physical, and thermal property details of Ru0.9Sr2YCu2.1O7.9 (Y/Ru-1212) superconducting material synthesized through high pressure (6 GPa) and a high temperature (1400 °C) (HPHT) route are reported here. (Y/Ru-1212) crystallizes in P4/mmm tetragonal structure and is found free of any detectable impurities through X-ray diffractometry. Ru-spins are ordered magnetically above 145 K, with a sizeable ferromagnetic component at 5 K. Further clear diamagnetic transitions are seen in both zero-field-cooled (ZFC) and field-cooled (FC) magnetic susceptibility measurements and exhibiting superconductivity below 50 K. Both the thermoelectric power (S) and thermal conductivity (κ) measurements show superconductivity onset below 50 K with S=0 at 30 K and a broad hump in heat capacity C p (T) below 30 K. Heat capacity (C p ) measurements also exhibit the magnetic ordering temperature as a hump below 145 K. The appearance of a hump in C p (T), instead of a clear transition, is indicative of short range magnetic correlations like spin glass (SG). Neither the high (145 K) nor the low (30 K) temperature humps of C p (T) could be analyzed quantitatively because of short magnetic correlations in former and mixing of both superconductivity and FM components in a later case. The observed data is compared with various reported Ru-1212 systems synthesized under normal pressure conditions. It is concluded that HPHT synthesized Y/Ru-1212 is a bulk superconductor below 30 K with a substantial FM component.  相似文献   

12.
The magnetocaloric effect of Gd5Si2Ge2 alloys under heat treatment conditions are investigated in low magnetic fields. The magnetocaloric effect (MCE) is studied by measuring magnetic entropy change (ΔS M) and adiabatic temperature change (ΔT ad) in a magnetic field of 1·5 T using a vibrating sample magnetometer (VSM) and a home-made magnetocaloric effect measuring apparatus, respectively. The maximum ΔS M of the alloys increases by 200% from 4·38 to 13·32 J kg−1 K−1, the maximum ·T ad increases by 105% from 1·9 to 3·9 K when compared to the as-cast due to the homogeneous composition distribution and microstructure, while the magnetic ordering temperature is slightly reduced. These results indicate that the annealed Gd5Si2Ge2 compounds are promising as high-performance magnetic refrigerants working room temperature in relatively low magnetic fields.  相似文献   

13.
The heat capacity of Ga2Se3 is measured from 14 to 320 K by adiabatic calorimetry. The smoothed heat capacity data are used to evaluate temperature-dependent thermodynamic functions (entropy, enthalpy increment, and reduced Gibbs energy) of gallium selenide. Under standard conditions, the thermodynamic properties of Ga2Se3 are C p 0 (298.15 K) = 120.8 ± 0.2 J/(K mol), S0(298.15 K) = 180.4 ± 0.4 J/(K mol), H0(298.15 K) - H0(0) = 25.32 ± 0.05 kJ/mol, and Φ0(298.15 K) = 95.52 ± 0.19 J/(K mol). The Debye characteristic temperature of Ga2Se3 evaluated from heat capacity data is 340 ± 10 K.  相似文献   

14.
The physical properties of the La0.6Y0.1Ca0.3MnO3 compound have been investigated, focusing on the magnetoresistance phenomenon studied by both dc and ac electrical transport measurements. X-ray diffraction and scanning electron microscopy analysis of ceramic samples prepared by the sol–gel method revealed that specimens are single phase and have average grain size of ∼0.5 μm. Magnetization and 4-probe dc electrical resistivity ρ(T,H) experiments showed that a ferromagnetic transition at T C ∼ 170 K is closely related to a metal-insulator (MI) transition occurring at essentially the same temperature T MI . The magnetoresistance effect was found to be more pronounced at low applied fields (H ≤ 2.5 T) and temperatures close to the MI transition. The ac electrical transport was investigated by impedance spectroscopy Z(f,T,H) under applied magnetic field H up to 1 T. The Z(f,T,H) data exhibited two well-defined relaxation processes that exhibit different behaviors depending on the temperature and applied magnetic field. Pronounced effects were observed close to T C and were associated with the coexistence of clusters with different electronic and magnetic properties. In addition, the appreciable decrease of the electrical permittivity ε′(T,H) is consistent with changes in the concentration of e g mobile holes, a feature much more pronounced close to T C .  相似文献   

15.
The Eu2Sn2O7 compound has been prepared by solid-state reaction (by sequentially firing a stoichiometric mixture of Eu2O3 and SnO2 in air at 1273 and 1473 K) and its heat capacity has been determined by differential scanning calorimetry in the temperature range 370–1000 K. The heat capacity data have been used to evaluate the thermodynamic properties of europium stannate: enthalpy increment H°(T)–H°(370 K), entropy change S°(T)–S°(370 K), and reduced Gibbs energy Ф°(T). Raman spectra of Eu2Sn2O7 polycrystals with the pyrochlore structure have been measured in the range 200–1200 cm–1.  相似文献   

16.
The heat capacity of InVO4 has been determined by differential scanning calorimetry in the temperature range 339–1089 K. The experimental Cp(T) data have been used to evaluate the thermodynamic functions of indium orthovanadate: enthalpy increment H°(T)–H°(339 K), entropy change S°(T)–S°(339 K), and reduced Gibbs energy Ф°(Т). The specific heats of GaVO4 and TlVO4 have been evaluated.  相似文献   

17.
The calorimetric method is used to investigate the heat capacity of DyMeIICr2O5.5(MeII-Mg, Ca) chromites in the range from 298.15 to 673 K. The C p 0 f(T) curves exhibit λ-like effects at 348 and 548 K for DyMgCr2O5.5 and at 473 K for DyCaCr2O5.5, which apparently relate to second-order phase transitions. The temperature dependences are calculated for thermodynamic functions C p 0 (T), H 0(T)-H 0(298.15), S 0(T), and Φ**(T).  相似文献   

18.
The equilibrium subsolidus phase diagram of the TlBr-Tl2Se-TlSe system has been mapped out using X-ray diffraction analysis and emf measurements on thallium concentration cells. Tl5Se2Br has been shown to have a broad homogeneity region. The emf results are used to evaluate the relative partial thermodynamic functions of the thallium in the alloys studied and the standard integral thermodynamic functions (ΔG 0(298 K), ΔH 0(298 K), S 0(298 K)) of the Tl5Se2Br-based solid solutions.  相似文献   

19.
We show that the temperature-dependent resistivity ρ(T), Hall number n H(T) and the cotangent of the Hall angle cot θ H(T) of Ba(Fe1−x Co x )As2 (x=0.0–0.2) can be scaled using a recently proposed model-independent scaling method (Luo et al. in Phys. Rev. B 77:014529, 2008). The zero field normal-state resistivity above T c can be reproduced by the expresion r(T) = r0 +cTexp(- \frac2\varDelta T )\rho(T) = \rho_{0} +cT\exp(- \frac{2\varDelta }{T} ) and scaled using the energy scale Δ, c and the residual resistivity ρ 0 as scaling parameters. The scaling parameters have been calculated and the compositional variation of 2Δ and ρ 0 has been determined. The 2Δ(x) dependence show almost linear decreasing in underdoped regime, minimum corresponding to the T c maximum and increasing in overdoped regime. The latter is different from that reported for cuprates. The existence of a universal metallic ρ(T) curve which, however, is restricted for the underdoped compounds to temperatures above a structural and antiferromagnetic transition is interpreted as an indication of a single mechanism which dominates the scattering of the charge carriers in Ba(Fe1−x Co x )As2 (x=0.0–0.2).  相似文献   

20.
CdGa2S4 single crystals have been grown from a presynthesized source material by closed-tube iodine vapor transport, and their X-ray dosimetric properties have been studied. Their X-ray sensitivity coefficient K ranges from K = 1.26 × 10−11 to 1.39 × 10−10 A min/(V R) at effective X-ray hardnesses V a = 25–50 keV and dose rates E = 0.75–78.05 R/min, and increases with X-ray dose. The K(V a) curve has a negative slope, in contrast to the K(E) curve. The photocurrent-dose curves of the CdGa2S4 single crystals demonstrate that the steady-state X-ray photocurrent is a power-law function of X-ray dose rate: ΔI E,0E α . With increasing V a, the slope of the curves sharply decreases and α approaches unity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号