首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a fully automated method for MR brain image segmentation into Gray Matter, White Matter and Cerebro‐spinal Fluid. It is an extension of Fuzzy C Means Clustering Algorithm which overcomes its drawbacks, of sensitivity to noise and inhomogeneity. In the conventional FCM, the membership function is computed based on the Euclidean distance between the pixel and the cluster center. It does not take into consideration the spatial correlation among the neighboring pixels. This means that the membership values of adjacent pixels belonging to the same cluster may not have the same range of membership value due to the contamination of noise and hence misclassified. Hence, in the proposed method, the membership function is convolved with mean filter and thus the local spatial information is incorporated in the clustering process. The method further includes pixel re‐labeling and contrast enhancement using non‐linear mapping to improve the segmentation accuracy. The proposed method is applied to both simulated and real T1‐weighted MR brain images from BrainWeb and IBSR database. Experiments show that there is an increase in segmentation accuracy of around 30% over the conventional methods and 6% over the state of the art methods.  相似文献   

2.
Fully automatic brain tumor segmentation is one of the critical tasks in magnetic resonance imaging (MRI) images. This proposed work is aimed to develop an automatic method for brain tumor segmentation process by wavelet transformation and clustering technique. The proposed method using discrete wavelet transform (DWT) for pre‐ and post‐processing, fuzzy c‐means (FCM) for brain tissues segmentation. Initially, MRI images are preprocessed by DWT to sharpen the images and enhance the tumor region. It assists to quicken the FCM clustering technique and classified into four major classes: gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and background (BG). Then check the abnormality detection using Fuzzy symmetric measure for GM, WM, and CSF classes. Finally, DWT method is applied in segmented abnormal region of images respectively and extracts the tumor portion. The proposed method used 30 multimodal MRI training datasets from BraTS2012 database. Several quantitative measures were calculated and compared with the existing. The proposed method yielded the mean value of similarity index as 0.73 for complete tumor, 0.53 for core tumor, and 0.35 for enhancing tumor. The proposed method gives better results than the existing challenging methods over the publicly available training dataset from MICCAI multimodal brain tumor segmentation challenge and a minimum processing time for tumor segmentation. © 2016 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 26, 305–314, 2016  相似文献   

3.
Diagnosis using medical images helps doctors detect diseases and treat patients effectively. A system that segments objects automatically from magnetic resonance imaging (MRI) plays an important role when doctors diagnose injuries and brain diseases. This article presents a method for automatic brain, scalp, and skull segmentation from MRI that uses Bitplane and the Adaptive Fast Marching method (FMM). We focus on the segmentation of these tissues, especially the brain, because they are the essential objects, and their segmentation is the first step in the segmentation of other tissues. First, the type of each slice is set based on the shape of the brain, and the head region is segmented by removing its background. Second, the sure region and the unsure region are segmented based on the Bitplane method. Finally, this work proposes an approach for classification that is based on the Adaptive FMM. This approach is evaluated with the BrainWeb and Neurodevelopmental MRI databases and compared with other methods. The Dice Averages for brain, scalp, and skull segmentation are 96%, 80%, and 93%, respectively, on the BrainWeb database and 91%, 67%, and 80%, respectively, on the Neurodevelopmental MRI database.  相似文献   

4.
This paper presents a skull stripping method to segment the brain from MRI human head scans using multi-seeded region growing technique. The proposed method has two stages. In Stage-1, the brain in the middle slice is segmented, the brains in the remaining slices are segmented in Stage-2. In each stage, the proposed method is required to identify the rough brain mask. The fine brain region in the rough brain mask is segmented using multi-seeded region growing approach. The proposed method uses multiple seed points which are selected automatically based on the intensity profile of grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) of the brain image. The proposed brain segmentation method using multi-seeded region growing (BSMRG) was validated using 100 volumes of T1, T2 and PD-weighted MR brain images obtained from Internet Brain Segmentation Repository (IBSR), LONI and Whole Brain Atlas (WBA). The best Dice (D) value of 0·971 and Jaccard (J) value of 0·944 were recorded by the proposed BSMRG method on IBSR dataset. For LONI dataset, the best values of D?=?0·979 and J?=?0·960 were obtained for the sagittal oriented images by the proposed method. The performance consistency of the proposed method was tested on the brain images of all types and orientation and have and produced better and stable results than the existing methods Brain Extraction Tool (BET), Brain Surface Extraction (BSE), Watershed Algorithm (WAT), Hybrid Watershed Algorithm (HWA) and Skull Stripping using Graph Cuts (GCUT).  相似文献   

5.
This proposed work is aimed to develop a rapid automatic method to detect the brain tumor from T2‐weighted MRI brain images using the principle of modified minimum error thresholding (MET) method. Initially, modified MET method is applied to produce well segmented and sub‐structural clarity for MRI brain images. Further, using FCM clustering the appearance of tumor area is refined. The obtained results are compared with corresponding ground truth images. The quantitative measures of results were compared with the results of those conventional methods using the metrics predictive accuracy (PA), dice coefficient (DC), and processing time. The PA and DC values of the proposed method attained maximum value and processing time is minimum while compared to conventional FCM and k‐means clustering techniques. This proposed method is more efficient and faster than the existing segmentation methods in detecting the tumor region from T2‐weighted MRI brain images. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 77–85, 2015  相似文献   

6.
Image denoising is an integral component of many practical medical systems. Non‐local means (NLM) is an effective method for image denoising which exploits the inherent structural redundancy present in images. Improved adaptive non‐local means (IANLM) is an improved variant of classical NLM based on a robust threshold criterion. In this paper, we have proposed an enhanced non‐local means (ENLM) algorithm, for application to brain MRI, by introducing several extensions to the IANLM algorithm. First, a Rician bias correction method is applied for adapting the IANLM algorithm to Rician noise in MR images. Second, a selective median filtering procedure based on fuzzy c‐means algorithm is proposed as a postprocessing step, in order to further improve the quality of IANLM‐filtered image. Third, different parameters of the proposed ENLM algorithm are optimized for application to brain MR images. Different variants of the proposed algorithm have been presented in order to investigate the influence of the proposed modifications. The proposed variants have been validated on both T1‐weighted (T1‐w) and T2‐weighted (T2‐w) simulated and real brain MRI. Compared with other denoising methods, superior quantitative and qualitative denoising results have been obtained for the proposed algorithm. Additionally, the proposed algorithm has been applied to T2‐weighted brain MRI with multiple sclerosis lesion to show its superior capability of preserving pathologically significant information. Finally, impact of the proposed algorithm has been tested on segmentation of brain MRI. Quantitative and qualitative segmentation results verify that the proposed algorithm based segmentation is better compared with segmentation produced by other contemporary techniques.  相似文献   

7.
Medical image segmentation is a preliminary stage of inclusion in identification tools. The correct segmentation of brain Magnetic Resonance Imaging (MRI) images is crucial for an accurate detection of the disease diagnosis. Due to in‐homogeneity, low distinction and noise the segmentation of the brain MRI images is treated as the most challenging task. In this article, we proposed hybrid segmentation, by combining the clustering methods with Hidden Markov Random Field (HMRF) technique. This aims to decrease the computational load and improves the runtime of segmentation method, as MRF methodology is used in post‐processing the images. Its evaluation has performed on real imaging data, resulting in the classification of brain tissues with dice similarity metric. These results indicate the improvement in performance of the proposed method with various noise levels, compared with existing algorithms. In implementation, selection of clustering method provides better results in the segmentation of MRI brain images.  相似文献   

8.
The aim of this work is to develop a new model for segmentation of brain structures in medical brain MR images. Brain segmentation is a challenging task due to the complex anatomical structure of brain structures as well as intensity nonuniformity, partial volume effects and noise. Generally the structures of interest are of relatively complicated size and have significant shape variations, the structures boundaries may be blurry or even missing, and the surrounding background is full of irrelevant edges. Segmentation methods based on fuzzy models have been developed to overcome the uncertainty caused by these effects. In this study, we propose a robust and accurate brain structures segmentation method based on a combination of fuzzy model and deformable model. Our method breaks up into two great parts. Initially, a preliminary stage allows to construct the various information maps, in particular a fuzzy map, used as a principal information source, constructed using the Fuzzy C‐means method (FCM). Then, a deformable model implemented with the generalized fast marching method (GFMM), evolves toward the structure to be segmented, under the action of a normal force defined from these information maps. In this sense, we used a powerful evolution function based on a fuzzy model, adapted for brain structures. Two extensions of our general method are presented in this work. The first extension concerns the addition of an edge map to the fuzzy model and the use of some rules adapted to the segmentation process. The second extension consists of the use of several models evolving simultaneously to segment several structures. Extensive experiments are conducted on both simulated and real brain MRI datasets. Our proposed approach shows promising and achieves significant improvements with respect to several state‐of‐the‐art methods and with the three practical segmentation techniques widely used in neuroimaging studies, namely SPM, FSL, and Freesurfer.  相似文献   

9.
In this paper, a complete and fully automatic MRI brain tumour detection and segmentation methodology is presented as an efficient clinical-aided tool using Gaussian mixture model, Fuzzy C-Means, active contour, wavelet transform and entropy segmentation methods. The proposed algorithm is based on two main parts: the skull stripping and tumour auto-detection and segmentation. The first part was evaluated using IBSR, LPBA40 and OASIS databases, and the obtained results show that our proposed method outclasses the best popular algorithms of brain extraction with scores of 0.913, 0.954 and 0.957 for the Jaccard index, Dice coefficient and sensitivity, respectively. The second part has been evaluated using BRATS database; this methodology has achieved an accuracy of 69% of true detection, and a false detection is around 22% of healthy cases detected as tumour cases and a false detection is around 9% of tumour cases detected as healthy cases. So, the tumour segmentation performed 0.67 Jaccard index and 0.69 Dice coefficient. Our methodology is found to be a fast, effective, accurate and fully automatic one without the need to any human interaction and prior knowledge for training phases as supervised methodologies in clinical applications.  相似文献   

10.
Atlas‐based segmentation is a high level segmentation technique which has become a standard paradigm for exploiting prior knowledge in image segmentation. Recent multiatlas‐based methods have provided greatly accurate segmentations of different parts of the human body by propagating manual delineations from multiple atlases in a data set to a query subject and fusing them. The female pelvic region is known to be of high variability which makes the segmentation task difficult. We propose, here, an approach for the segmentation of magnetic resonance imaging (MRI) called multiatlas‐based segmentation using online machine learning (OML). The proposed approach allows separating regions which may be affected by cervical cancer in a female pelvic MRI. The suggested approach is based on an online learning method for the construction of the dataset of atlases. The experiments demonstrate the higher accuracy of the suggested approach compared to a segmentation technique based on a fixed dataset of atlases and single‐atlas‐based segmentation technique.  相似文献   

11.
The brain tumour is the mass where some tissues become old or damaged, but they do not die or not leave their space. Mainly brain tumour masses occur due to malignant masses. These tissues must die so that new tissues are allowed to be born and take their place. Tumour segmentation is a complex and time-taking problem due to the tumour’s size, shape, and appearance variation. Manually finding such masses in the brain by analyzing Magnetic Resonance Images (MRI) is a crucial task for experts and radiologists. Radiologists could not work for large volume images simultaneously, and many errors occurred due to overwhelming image analysis. The main objective of this research study is the segmentation of tumors in brain MRI images with the help of digital image processing and deep learning approaches. This research study proposed an automatic model for tumor segmentation in MRI images. The proposed model has a few significant steps, which first apply the pre-processing method for the whole dataset to convert Neuroimaging Informatics Technology Initiative (NIFTI) volumes into the 3D NumPy array. In the second step, the proposed model adopts U-Net deep learning segmentation algorithm with an improved layered structure and sets the updated parameters. In the third step, the proposed model uses state-of-the-art Medical Image Computing and Computer-Assisted Intervention (MICCAI) BRATS 2018 dataset with MRI modalities such as T1, T1Gd, T2, and Fluid-attenuated inversion recovery (FLAIR). Tumour types in MRI images are classified according to the tumour masses. Labelling of these masses carried by state-of-the-art approaches such that the first is enhancing tumour (label 4), edema (label 2), necrotic and non-enhancing tumour core (label 1), and the remaining region is label 0 such that edema (whole tumour), necrosis and active. The proposed model is evaluated and gets the Dice Coefficient (DSC) value for High-grade glioma (HGG) volumes for their test set-a, test set-b, and test set-c 0.9795, 0.9855 and 0.9793, respectively. DSC value for the Low-grade glioma (LGG) volumes for the test set is 0.9950, which shows the proposed model has achieved significant results in segmenting the tumour in MRI using deep learning approaches. The proposed model is fully automatic that can implement in clinics where human experts consume maximum time to identify the tumorous region of the brain MRI. The proposed model can help in a way it can proceed rapidly by treating the tumor segmentation in MRI.  相似文献   

12.
Stereotactic neuro‐radiosurgery is a well‐established therapy for intracranial diseases, especially brain metastases and highly invasive cancers that are difficult to treat with conventional surgery or radiotherapy. Nowadays, magnetic resonance imaging (MRI) is the most used modality in radiation therapy for soft‐tissue anatomical districts, allowing for an accurate gross tumor volume (GTV) segmentation. Investigating also necrotic material within the whole tumor has significant clinical value in treatment planning and cancer progression assessment. These pathological necrotic regions are generally characterized by hypoxia, which is implicated in several aspects of tumor development and growth. Therefore, particular attention must be deserved to these hypoxic areas that could lead to recurrent cancers and resistance to therapeutic damage. This article proposes a novel fully automatic method for necrosis extraction (NeXt), using the Fuzzy C‐Means algorithm, after the GTV segmentation. This unsupervised Machine Learning technique detects and delineates the necrotic regions also in heterogeneous cancers. The overall processing pipeline is an integrated two‐stage segmentation approach useful to support neuro‐radiosurgery. NeXt can be exploited for dose escalation, allowing for a more selective strategy to increase radiation dose in hypoxic radioresistant areas. Moreover, NeXt analyzes contrast‐enhanced T1‐weighted MR images alone and does not require multispectral MRI data, representing a clinically feasible solution. This study considers an MRI dataset composed of 32 brain metastatic cancers, wherein 20 tumors present necroses. The segmentation accuracy of NeXt was evaluated using both spatial overlap‐based and distance‐based metrics, achieving these average values: Dice similarity coefficient 95.93% ± 4.23% and mean absolute distance 0.225 ± 0.229 (pixels).  相似文献   

13.
Magnetic resonance imaging (MRI) brain tumor segmentation is a crucial task for clinical treatment. However, it is challenging owing to variations in type, size, and location of tumors. In addition, anatomical variation in individuals, intensity non-uniformity, and noises adversely affect brain tumor segmentation. To address these challenges, an automatic region-based brain tumor segmentation approach is presented in this paper which combines fuzzy shape prior term and deep learning. We define a new energy function in which an Adaptively Regularized Kernel-Based Fuzzy C-Means (ARKFCM) Clustering algorithm is utilized for inferring the shape of the tumor to be embedded into the level set method. In this way, some shortcomings of traditional level set methods such as contour leakage and shrinkage have been eliminated. Moreover, a fully automated method is achieved by using U-Net to obtain the initial contour, reducing sensitivity to initial contour selection. The proposed method is validated on the BraTS 2017 benchmark dataset for brain tumor segmentation. Average values of Dice, Jaccard, Sensitivity and specificity are 0.93 ± 0.03, 0.86 ± 0.06, 0.95 ± 0.04, and 0.99 ± 0.003, respectively. Experimental results indicate that the proposed method outperforms the other state-of-the-art methods in brain tumor segmentation.  相似文献   

14.
Abnormal growth of brain tissues is the real cause of brain tumor. Strategy for the diagnosis of brain tumor at initial stages is one of the key step for saving the life of a patient. The manual segmentation of brain tumor magnetic resonance images (MRIs) takes time and results vary significantly in low-level features. To address this issue, we have proposed a ResNet-50 feature extractor depended on multilevel deep convolutional neural network (CNN) for reliable images segmentation by considering the low-level features of MRI. In this model, we have extracted features through ResNet-50 architecture and fed these feature maps to multi-level CNN model. To handle the classification process, we have collected a total number of 2043 MRI patients of normal, benign, and malignant tumor. Three model CNN, multi-level CNN, and ResNet-50 based multi-level CNN have been used for detection and classification of brain tumors. All the model results are calculated in terms of various numerical values identified as precision (P), recall (R), accuracy (Acc) and f1-score (F1-S). The obtained average results are much better as compared to already existing methods. This modified transfer learning architecture might help the radiologists and doctors as a better significant system for tumor diagnosis.  相似文献   

15.
Abnormal growth of cells in brain leads to the formation of tumors, which are categorized into benign and malignant. In this article, Co‐Active Adaptive Neuro Fuzzy Inference System (CANFIS) classification based brain tumor detection and its grading system is proposed. It has two phases as brain tumor segmentation and brain tissue segmentation. In brain tumor segmentation, CANFIS classifier is used to classify the test brain image into benign or malignant. Then, morphological operations are applied over the malignant image in order to segment the tumor regions in brain image. The K‐means classifier is used to classify the brain tissues into Grey Matter (GM), White Matter (WM) and Cerebro Spinal Fluid (CSF) regions as three different classes. Next, the segmented tumor is graded as mild, moderate or severe based on the presence of segmented tumor region in brain tissues.  相似文献   

16.
In brain MR images, the noise and low‐contrast significantly deteriorate the segmentation results. In this paper, we introduce a novel application of dual‐tree complex wavelet transform (DT‐CWT), and propose an automatic unsupervised segmentation method integrating DT‐CWT with self‐organizing map for brain MR images. First, a multidimensional feature vector is constructed based on the intensity, low‐frequency subband of DT‐CWT, and spatial position information. Then, a spatial constrained self‐organizing tree map (SCSOTM) is presented as the segmentation system. It adaptively captures the complicated spatial layout of the individual tissues, and overcomes the problem of overlapping gray‐scale intensities for different tissues. SCSOTM applies a dual‐thresholding method for automatic growing of the tree map, which uses the information from the high‐frequency subbands of DT‐CWT. The proposed method is validated by extensive experiments using both simulated and real T1‐weighted MR images, and compared with the state‐of‐the‐art algorithms. © 2014 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 24, 208–214, 2014  相似文献   

17.
Nowadays, radiation treatment is beginning to intensively use MRI thanks to its greater ability to discriminate healthy and diseased soft‐tissues. Leksell Gamma Knife® is a radio‐surgical device, used to treat different brain lesions, which are often inaccessible for conventional surgery, such as benign or malignant tumors. Currently, the target to be treated with radiation therapy is contoured with slice‐by‐slice manual segmentation on MR datasets. This approach makes the segmentation procedure time consuming and operator‐dependent. The repeatability of the tumor boundary delineation may be ensured only by using automatic or semiautomatic methods, supporting clinicians in the treatment planning phase. This article proposes a semiautomatic segmentation method, based on the unsupervised Fuzzy C‐Means clustering algorithm. Our approach helps segment the target and automatically calculates the lesion volume. To evaluate the performance of the proposed approach, segmentation tests on 15 MR datasets were performed, using both area‐based and distance‐based metrics, obtaining the following average values: Similarity Index = 95.59%, Jaccard Index = 91.86%, Sensitivity = 97.39%, Specificity = 94.30%, Mean Absolute Distance = 0.246[pixels], Maximum Distance = 1.050[pixels], and Hausdorff Distance = 1.365[pixels]. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 213–225, 2015  相似文献   

18.
Magnetic resonance imaging (MRI) brain image segmentation is essential at preliminary stage in the neuroscience research and computer‐aided diagnosis. However, presence of noise and intensity inhomogeneity in MRI brain images leads to improper segmentation. The fuzzy entropy clustering (FEC) is often used to deal with noisy data. One major disadvantage of the FEC algorithm is that it does not consider the local spatial information. In this article, we have proposed an improved fuzzy entropy clustering (IFEC) algorithm by introducing a new fuzzy factor, which incorporates both local spatial and gray‐level information. The IFEC algorithm is insensitive to noise, preserves the image detail during clustering, and is free of parameter selection. The efficacy of IFEC algorithm is demonstrated by comparing it quantitatively with the state‐of‐the‐art segmentation approaches in terms of similarity index on publically available real and simulated MRI brain images.  相似文献   

19.
Tissue segmentation in magnetic resonance brain scans is the most critical task in different aspects of brain analysis. Because manual segmentation of brain magnetic resonance imaging (MRI) images is a time‐consuming and labor‐intensive procedure, automatic image segmentation is widely used for this purpose. As Markov Random Field (MRF) model provides a powerful tool for segmentation of images with a high level of artifacts, it has been considered as a superior method. But because of the high computational cost of MRF, it is not appropriate for online processing. This article has proposed a novel method based on a proper combination of MRF model and watershed algorithm in order to alleviate the MRF's drawbacks. Results illustrate that the proposed method has a good ability in MRI image segmentation, and also decreases the computational time effectively, which is a valuable improvement in the online applications. © 2017 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 27, 78–88, 2017  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号