首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
一种基于FCM的图像分割方法   总被引:1,自引:0,他引:1  
提出一种新的图像分割方法 FWFCM(fast walvet fuzzy C-means method),该方法对图像像素点的灰度进行模糊隶属度的分析,将需要聚类的像素空间投影到灰度直方图空间,从而减少了经典FCM算法的迭代计算量,提高了算法的收敛速度;并且利用小波变换的多分辨率的分析,抑制噪声点对图像分割的影响,提高了图像分割的精度.  相似文献   

2.
Denoizing of magnetic resonance (MR) brain images has been focus of numerous studies in the past. The performance of subsequent stages of image processing, in automated image analysis, is substantially improved by explicit consideration of noise. Nonlocal means (NLM) is a popular denoizing method which exploits usual redundancy present in an image to restore noise free image. It computes restored value of a pixel as weighted average of candidate pixels in a search window. In this article, we propose an improved version of the NLM algorithm which is modified in two ways. First, a robust threshold criterion is introduced, which helps selecting suitable pixels for participation in the restoration process. Second, the search window size is made adaptive using a window adaptation test based on the proposed threshold criterion. The modified NLM algorithm is named as improved adaptive nonlocal means (IANLM). An alternate implementation of IANLM is also proposed which exploits the image smoothness property to yield better denoizing performance. The computational burden is reduced significantly due to proposed modifications. Experiments are performed on simulated and real brain MR images at various noise levels. Results indicate that the proposed algorithm produces not only better denoizing results (quantitatively and qualitatively), but is also computationally more efficient. Moreover, the proposed technique is incorporated in an already proposed segmentation framework to check its validity in the practical scenario of segmentation. Improved segmentation results (quantitative and qualitative) verify the practical usefulness of the proposed algorithm in real world medical applications. © 2013 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 23, 235–248, 2013  相似文献   

3.
Nowadays, radiation treatment is beginning to intensively use MRI thanks to its greater ability to discriminate healthy and diseased soft‐tissues. Leksell Gamma Knife® is a radio‐surgical device, used to treat different brain lesions, which are often inaccessible for conventional surgery, such as benign or malignant tumors. Currently, the target to be treated with radiation therapy is contoured with slice‐by‐slice manual segmentation on MR datasets. This approach makes the segmentation procedure time consuming and operator‐dependent. The repeatability of the tumor boundary delineation may be ensured only by using automatic or semiautomatic methods, supporting clinicians in the treatment planning phase. This article proposes a semiautomatic segmentation method, based on the unsupervised Fuzzy C‐Means clustering algorithm. Our approach helps segment the target and automatically calculates the lesion volume. To evaluate the performance of the proposed approach, segmentation tests on 15 MR datasets were performed, using both area‐based and distance‐based metrics, obtaining the following average values: Similarity Index = 95.59%, Jaccard Index = 91.86%, Sensitivity = 97.39%, Specificity = 94.30%, Mean Absolute Distance = 0.246[pixels], Maximum Distance = 1.050[pixels], and Hausdorff Distance = 1.365[pixels]. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 213–225, 2015  相似文献   

4.
In this article, a fully unsupervised method for brain tissue segmentation of T1‐weighted MRI 3D volumes is proposed. The method uses the Fuzzy C‐Means (FCM) clustering algorithm and a Fully Connected Cascade Neural Network (FCCNN) classifier. Traditional manual segmentation methods require neuro‐radiological expertise and significant time while semiautomatic methods depend on parameter's setup and trial‐and‐error methodologies that may lead to high intraoperator/interoperator variability. The proposed method selects the most useful MRI data according to FCM fuzziness values and trains the FCCNN to learn to classify brain’ tissues into White Matter, Gray Matter, and Cerebro‐Spinal Fluid in an unsupervised way. The method has been tested on the IBSR dataset, on the BrainWeb Phantom, on the BrainWeb SBD dataset, and on the real dataset “University of Palermo Policlinico Hospital” (UPPH), Italy. Sensitivity, Specificity, Dice and F‐Factor scores have been calculated on the IBSR and BrainWeb datasets segmented using the proposed method, the FCM algorithm, and two state‐of‐the‐art brain segmentation software packages (FSL and SPM) to prove the effectiveness of the proposed approach. A qualitative evaluation involving a group of five expert radiologists has been performed segmenting the real dataset using the proposed approach and the comparison algorithms. Finally, a usability analysis on the proposed method and reference methods has been carried out from the same group of expert radiologists. The achieved results show that the segmentations of the proposed method are comparable or better than the reference methods with a better usability and degree of acceptance.  相似文献   

5.
In brain MR images, the noise and low‐contrast significantly deteriorate the segmentation results. In this paper, we introduce a novel application of dual‐tree complex wavelet transform (DT‐CWT), and propose an automatic unsupervised segmentation method integrating DT‐CWT with self‐organizing map for brain MR images. First, a multidimensional feature vector is constructed based on the intensity, low‐frequency subband of DT‐CWT, and spatial position information. Then, a spatial constrained self‐organizing tree map (SCSOTM) is presented as the segmentation system. It adaptively captures the complicated spatial layout of the individual tissues, and overcomes the problem of overlapping gray‐scale intensities for different tissues. SCSOTM applies a dual‐thresholding method for automatic growing of the tree map, which uses the information from the high‐frequency subbands of DT‐CWT. The proposed method is validated by extensive experiments using both simulated and real T1‐weighted MR images, and compared with the state‐of‐the‐art algorithms. © 2014 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 24, 208–214, 2014  相似文献   

6.
王迪  董素芬  程芳  赵艳  李今 《计量学报》2021,42(8):986-992
利用计算机视觉技术对畜肉分级的方法种类繁多,但由于光照因素使前期图像预处理分割目标和背景的工作难度增大。针对传统的最大类间方差法分割图像效果不佳、噪声适应能力不强的问题,以及核磁共振、高光谱成像等无损检测方法大多存在检测仪器体积大、不便于携带、成本高等问题,提出利用色调、饱和度、明度(Hue,Saturation,Value,HSV)色彩空间结合聚类方法对图像像素点进行聚类分割。在对取自自然光照环境中的猪肉图像进行分割时,所提方法相对于传统聚类分割方法分割正确率平均提高1.46%;在对人工加入了0.1椒盐噪声和0.2椒盐噪声的图像进行分割时,该方法相对于传统方法表现出了更好的抗噪声能力,传统分割方法平均错误率分别升高了16.15%和38.28%,该方法平均错误率仅升高了1.57%和1.49%。该方法具有良好的分割准确率和噪声鲁棒性,提高了目标区域的检测精度,减少了图像预处理阶段的信息丢失,提高了畜肉分级方法的质量。  相似文献   

7.
This article aims to develop a method for the detection and segmentation of a cytoplast and nucleus from a cervix smear image. First, the technique of equalization method with Gaussian filter is adopted to eliminate noise in the image. Second, a new edge enhancement technique is proposed to work out the coarseness of each pixel, which is later used as a determining characteristic of reinforced object images. A two‐group object enhancement technique is then used to reinforce this object according to rough pixels. Third, the proposed detector enhances the gradients of the edges of the cytoplast and nucleus while suppressing the noise gradients, and then specifies the pixels with higher gradients as possible edge pixels. Finally, it picks out the two longest closed curves constructed by part of the edge pixels. Detection and segmentation performance of the proposed method is later compared with seed region growing feature extraction and level set method using 10 cervix smear images as example. Besides comparing the contour segment of the cytoplast and nucleus obtained by using different methods, we also compare the quality of the segmentation results. Experimental results show that the proposed detector demonstrates an impressive performance. © 2009 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 19, 260–270, 2009  相似文献   

8.
The data acquired by magnetic resonance (MR) imaging system are inherently degraded by noise that has its origin in the thermal Brownian motion of electrons. Denoising can enhance the quality (by improving the SNR) of the acquired MR image, which is important for both visual analysis and other post processing operations. Recent works on maximum likelihood (ML) based denoising shows that ML methods are very effective in denoising MR images and has an edge over the other state‐of‐the‐art methods for MRI denoising. Among the ML based approaches, the Nonlocal maximum likelihood (NLML) method is commonly used. In the conventional NLML method, the samples for the ML estimation of the unknown true pixel are chosen in a nonlocal fashion based on the intensity similarity of the pixel neighborhoods. Euclidean distance is generally used to measure this similarity. It has been recently shown that computing similarity measure is more robust in discrete cosine transform (DCT) subspace, compared with Euclidean image subspace. Motivated by this observation, we integrated DCT into NLML to produce an improved MRI filtration process. Other than improving the SNR, the time complexity of the conventional NLML can also be significantly reduced through the proposed approach. On synthetic MR brain image, an average improvement of 5% in PSNR and 86%reduction in execution time is achieved with a search window size of 91 × 91 after incorporating the improvements in the existing NLML method. On an experimental kiwi fruit image an improvement of 10% in PSNR is achieved. We did experiments on both simulated and real data sets to validate and to demonstrate the effectiveness of the proposed method. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 256–264, 2015  相似文献   

9.
In medical imaging, segmenting brain tumor becomes a vital task, and it provides a way for early diagnosis and treatment. Manual segmentation of brain tumor in magnetic resonance (MR) images is a time‐consuming and challenging task. Hence, there is a need for a computer‐aided brain tumor segmentation approach. Using deep learning algorithms, a robust brain tumor segmentation approach is implemented by integrating convolution neural network (CNN) and multiple kernel K means clustering (MKKMC). In this proposed CNN‐MKKMC approach, classification of MR images into normal and abnormal is performed by CNN algorithm. At next, MKKMC algorithm is employed to segment the brain tumor from the abnormal brain image. The proposed CNN‐MKKMC algorithm is evaluated both visually and objectively in terms of accuracy, sensitivity, and specificity with the existing segmentation methods. The experimental results demonstrate that the proposed CNN‐MKKMC approach yields better accuracy in segmenting brain tumor with less time cost.  相似文献   

10.
Image denoising is an integral component of many practical medical systems. Non‐local means (NLM) is an effective method for image denoising which exploits the inherent structural redundancy present in images. Improved adaptive non‐local means (IANLM) is an improved variant of classical NLM based on a robust threshold criterion. In this paper, we have proposed an enhanced non‐local means (ENLM) algorithm, for application to brain MRI, by introducing several extensions to the IANLM algorithm. First, a Rician bias correction method is applied for adapting the IANLM algorithm to Rician noise in MR images. Second, a selective median filtering procedure based on fuzzy c‐means algorithm is proposed as a postprocessing step, in order to further improve the quality of IANLM‐filtered image. Third, different parameters of the proposed ENLM algorithm are optimized for application to brain MR images. Different variants of the proposed algorithm have been presented in order to investigate the influence of the proposed modifications. The proposed variants have been validated on both T1‐weighted (T1‐w) and T2‐weighted (T2‐w) simulated and real brain MRI. Compared with other denoising methods, superior quantitative and qualitative denoising results have been obtained for the proposed algorithm. Additionally, the proposed algorithm has been applied to T2‐weighted brain MRI with multiple sclerosis lesion to show its superior capability of preserving pathologically significant information. Finally, impact of the proposed algorithm has been tested on segmentation of brain MRI. Quantitative and qualitative segmentation results verify that the proposed algorithm based segmentation is better compared with segmentation produced by other contemporary techniques.  相似文献   

11.
This article presents an image segmentation technique based on fuzzy entropy, which is applied to magnetic resonance (MR) brain images in order to detect brain tumors. The proposed method performs image segmentation based on adaptive thresholding of the input MR images. The image is classified into two membership functions (MFs) of the fuzzy region: Z‐function and S‐function. The optimal parameters of these fuzzy MFs are obtained using modified particle swarm optimization (MPSO) algorithm. The objective function for obtaining the optimal fuzzy MF parameters is considered to be the maximum fuzzy entropy. Through a number of examples, The performance is compared with existing entropy based object segmentation approaches and the superiority of the proposed method is demonstrated. The experimental results are compared with the exhaustive search method and Otsu's segmentation technique. The result shows the proposed fuzzy entropy‐based segmentation method optimized using MPSO achieves maximum entropy with proper segmentation of infected areas and with minimum computational time. © 2013 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 23, 281–288, 2013  相似文献   

12.
Abnormal growth of cells in brain leads to the formation of tumors, which are categorized into benign and malignant. In this article, Co‐Active Adaptive Neuro Fuzzy Inference System (CANFIS) classification based brain tumor detection and its grading system is proposed. It has two phases as brain tumor segmentation and brain tissue segmentation. In brain tumor segmentation, CANFIS classifier is used to classify the test brain image into benign or malignant. Then, morphological operations are applied over the malignant image in order to segment the tumor regions in brain image. The K‐means classifier is used to classify the brain tissues into Grey Matter (GM), White Matter (WM) and Cerebro Spinal Fluid (CSF) regions as three different classes. Next, the segmented tumor is graded as mild, moderate or severe based on the presence of segmented tumor region in brain tissues.  相似文献   

13.
The identification of brain tumors is multifarious work for the separation of the similar intensity pixels from their surrounding neighbours. The detection of tumors is performed with the help of automatic computing technique as presented in the proposed work. The non-active cells in brain region are known to be benign and they will never cause the death of the patient. These non-active cells follow a uniform pattern in brain and have lower density than the surrounding pixels. The Magnetic Resonance (MR) image contrast is improved by the cost map construction technique. The deep learning algorithm for differentiating the normal brain MRI images from glioma cases is implemented in the proposed method. This technique permits to extract the linear features from the brain MR image and glioma tumors are detected based on these extracted features. Using k-mean clustering algorithm the tumor regions in glioma are classified. The proposed algorithm provides high sensitivity, specificity and tumor segmentation accuracy.  相似文献   

14.
Stereotactic neuro‐radiosurgery is a well‐established therapy for intracranial diseases, especially brain metastases and highly invasive cancers that are difficult to treat with conventional surgery or radiotherapy. Nowadays, magnetic resonance imaging (MRI) is the most used modality in radiation therapy for soft‐tissue anatomical districts, allowing for an accurate gross tumor volume (GTV) segmentation. Investigating also necrotic material within the whole tumor has significant clinical value in treatment planning and cancer progression assessment. These pathological necrotic regions are generally characterized by hypoxia, which is implicated in several aspects of tumor development and growth. Therefore, particular attention must be deserved to these hypoxic areas that could lead to recurrent cancers and resistance to therapeutic damage. This article proposes a novel fully automatic method for necrosis extraction (NeXt), using the Fuzzy C‐Means algorithm, after the GTV segmentation. This unsupervised Machine Learning technique detects and delineates the necrotic regions also in heterogeneous cancers. The overall processing pipeline is an integrated two‐stage segmentation approach useful to support neuro‐radiosurgery. NeXt can be exploited for dose escalation, allowing for a more selective strategy to increase radiation dose in hypoxic radioresistant areas. Moreover, NeXt analyzes contrast‐enhanced T1‐weighted MR images alone and does not require multispectral MRI data, representing a clinically feasible solution. This study considers an MRI dataset composed of 32 brain metastatic cancers, wherein 20 tumors present necroses. The segmentation accuracy of NeXt was evaluated using both spatial overlap‐based and distance‐based metrics, achieving these average values: Dice similarity coefficient 95.93% ± 4.23% and mean absolute distance 0.225 ± 0.229 (pixels).  相似文献   

15.
Ciuc M  Bolon P  Trouve E  Buzuloiu V  Rudant JP 《Applied optics》2001,40(32):5954-5966
We present a new method for multitemporal synthetic aperture radar image filtering using three-dimensional (3D) adaptive neighborhoods. The method takes both spatial and temporal information into account to derive the speckle-free value of a pixel. For each pixel individually, a 3D adaptive neighborhood is determined that contains only pixels belonging to the same distribution as the current pixel. Then statistics computed inside the established neighborhood are used to derive the filter output. It is shown that the method provides good results by drastically reducing speckle over homogeneous areas while retaining edges and thin structures. The performances of the proposed method are compared in terms of subjective and objective measures with those given by several classical speckle-filtering methods.  相似文献   

16.
Visual background extraction algorithm, which utilises a global threshold to complete the foreground segmentation, cannot adapt to illumination change well. It will easily choose the wrong pixels to initialise the background model, resulting in the emergence of the ghost in the beginning of detection. In order to address these problems, this article proposes an improved algorithm based on pixel’s temporal–spatial information to initialise the background model. First of all, the pixels in video image sequences and their neighbourhood pixels are used to complete background model initialisation in the first five frames. Second, the segmentation threshold is adaptively obtained by the complexity of background that uses the spatial neighbourhood pixels. Finally, the background model of the neighbourhood pixels is updated by a dynamic update rate which is gained by calculating the Euclidean distance between pixels. Experimental results and comparative study illustrate that the improved method can not only increase the accuracy of target detection by reducing the impact of illumination change effectively but also eliminate the ghost quickly.  相似文献   

17.
This proposed work is aimed to develop a rapid automatic method to detect the brain tumor from T2‐weighted MRI brain images using the principle of modified minimum error thresholding (MET) method. Initially, modified MET method is applied to produce well segmented and sub‐structural clarity for MRI brain images. Further, using FCM clustering the appearance of tumor area is refined. The obtained results are compared with corresponding ground truth images. The quantitative measures of results were compared with the results of those conventional methods using the metrics predictive accuracy (PA), dice coefficient (DC), and processing time. The PA and DC values of the proposed method attained maximum value and processing time is minimum while compared to conventional FCM and k‐means clustering techniques. This proposed method is more efficient and faster than the existing segmentation methods in detecting the tumor region from T2‐weighted MRI brain images. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 77–85, 2015  相似文献   

18.
祁传琦  鲍华 《光电工程》2011,38(7):119-124,130
针对传统各向异性扩散滤波算法难以在噪声环境下有效估计边界像素,本文提出了一种热传导系数构造方法.该方法结合了各向异性扩散和各向同性扩散的优点,将每次迭代运算分解为两步:第一步采用各向同性扩散降低图像噪声,并完成热传导系数的计算;第二步运用各向异性扩散,实现真正的图像滤波.试验证明该方法能够在大尺度加性和乘性混合噪声环境...  相似文献   

19.
Medical image segmentation is a preliminary stage of inclusion in identification tools. The correct segmentation of brain Magnetic Resonance Imaging (MRI) images is crucial for an accurate detection of the disease diagnosis. Due to in‐homogeneity, low distinction and noise the segmentation of the brain MRI images is treated as the most challenging task. In this article, we proposed hybrid segmentation, by combining the clustering methods with Hidden Markov Random Field (HMRF) technique. This aims to decrease the computational load and improves the runtime of segmentation method, as MRF methodology is used in post‐processing the images. Its evaluation has performed on real imaging data, resulting in the classification of brain tissues with dice similarity metric. These results indicate the improvement in performance of the proposed method with various noise levels, compared with existing algorithms. In implementation, selection of clustering method provides better results in the segmentation of MRI brain images.  相似文献   

20.
This article aims at developing an automated hybrid algorithm using Cuckoo Based Search (CBS) and interval type‐2 fuzzy based clustering, so as to exhibit efficient magnetic resonance (MR) brain image segmentation. An automatic MR brain image segmentation facilitates and enables a radiologist to have a brief review and easy analysis of complicated tumor regions of imprecise gray level regions with minimal user interface. The tumor region having severe intensity variations and suffering from poor boundaries are to be detected by the proposed hybrid technique that could ease the process of clinical diagnosis and this tends to be the core subject of this article. The ability of the proposed technique is compared using standard comparison parameters such as mean squared error, peak signal to noise ratio, computational time, Dice Overlap Index, and Jaccard T animoto C oefficient Index. The proposed CBS combined with interval type‐2 fuzzy based clustering produces a sensitivity of 0.7143 and specificity of 0.9375, which are far better than the conventional techniques such as kernel based, entropy based, graph‐cut based, and self‐organizing maps based clustering. Appreciable segmentation results of tumor region that enhances clinical diagnosis is made available through this article and two of the radiologists who have hands on experience in the field of radiology have extended their support in validating the efficiency of the proposed methodology and have given their consent in utilizing the proposed methodology in the processes of clinical oncology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号