首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Experiments are conducted to investigate heat transfer characteristics of using nanofluid in a Loop Heat Pipe (LHP) as a working medium for heat input range from 20 W to 100 W. The experiments are carried out by manufacturing the LHP, in which the setup consists of a water tank with pump, a flat evaporator, condenser installed with two pieces of fans, two transportation lines (vapor and liquid lines), copper pipe sections for attachment of the thermocouples and power supply. The uniqueness of the current experimental setup is the vapor and liquid lines of LHP which are made of transparent plastic tube to visualize the fluid flow patterns. In this study, the LHP performance using silica (SiO2–H2O) nanofluid with particle volume fraction of 3% which was used as a coolant is examined. The experimental results are verified by simulation using Finite Element Method (FEM). The LHP performance is evaluated in terms of transient temperature distribution and total thermal resistance (Rt). Rt is estimated for both LHP using SiO2–H2O nanofluid and pure water cases under a steady state condition. The results reveal the average decrease of 28%–44% at heat input ranging from 20 W to 100 W in total thermal resistance of LHP using SiO2–H2O nanofluid as compared with pure water. Therefore, the presence of nanoparticles could greatly enhance the cooling of LHP. The experimental and simulation results are found in good agreement.  相似文献   

2.
Loop heat pipe for cooling of high-power electronic components   总被引:1,自引:0,他引:1  
In this paper, we present a new development of loop heat pipe (LHP) technology in its applications to cooling systems for high-power IGBT elements. An advanced method of LHP evaporator wick manufacturing has been proposed. Following this approach, a 16 mm outer diameter and 280 mm-length LHP evaporator was designed and manufactured. Nickel and titanium particles were used as raw material in LHP evaporator wick fabrication. LHP with a nominal capacity as high as 900 W for steady-state condition and more than 900 W for a periodic mode of operation at a temperature level below 100 °C and a heat transfer distance of 1.5 m was designed through the cooling of a high-power electronic module. An experimental program was developed to execute LHP performance tests and monitor its operability over a span of time. An investigation of the effects of LHP performance of parameters such as evaporator and condenser temperatures and LHP orientation in a gravity field was brought about. As regards the results of this initial series of tests, it was found that LHP spatial orientation within the nominal range of heat loads has no drastic effect on overall LHP functioning, whereas condenser temperature does play an important role, especially in the range of heat load close to critical. A 2D nodal model of the evaporator was developed and provides us with confirmation of the suggestion that when high-power dissipation levels are available, low wick conductivity is well adapted for LHP applications.  相似文献   

3.
A thorough experimental investigation was carried out on a copper–water compact loop heat pipe (LHP) with a unique flat, square evaporator with dimension of 30 mm (L)×30 mm (W)×15 mm (H) and a connecting tube having an inner diameter of 5 mm. Using a carefully designed experimental system, the startup process of the LHP when subjected to different heat loads was studied and the possible mechanisms behind the observed phenomena were explored. Two main modes, boiling trigger startup and evaporation trigger startup, were proposed to explain the varying startup behavior for different heat loads. In addition, an expression was developed to describe the radius of the receding meniscus inside the wick, to balance the increased pressure drop along the LHP with increasing heat loads. Finally, insight into how the compact LHP can transfer heat loads of more than 600 W (with a heat flux in excess of 100 W/cm2) with no occurrence of evaporator dry-out was provided.  相似文献   

4.
A loop heat pipe (LHP) with a circular flat evaporator was designed for cooling electronic devices. The flat evaporator with an outside diameter of 41 mm and a thickness of 15 mm was developed with a copper powder wick. The developed evaporator was examined to improve insufficient subcooling of liquid in a compensation chamber, which decreases an operating limitation of the LHP. Many different orientations of the elevation and direction of the evaporator were also considered during all of the experiments for this system. The active heating area was 3 cm × 3 cm, and water was used in the tests. This LHP generated a heat load in excess of 140 W with a total thermal resistance of 0.39 °C/W.  相似文献   

5.
We proposed an extended vapor chamber (EVC), consisting of an evaporator part and an extended condenser part. A layer of compressed copper foam was sintered on the inner evaporator surface. The extended condenser includes a circular-straight groove network and a fin region. The groove network distributes generated vapor everywhere in the internal volume of EVC. A set of capillary holes are machined within fins. A sliced copper foam bar is inserted in each of capillary hole. The peaks of copper foam bar are tightly contacted with the evaporator copper foam piece. Water is used as the working fluid with a heater area of 0.785 cm2. A minimum thermal resistance of 0.03 K/W is reached for the bottom heating. The heat flux is up to 450 W/cm2 without reaching dryout. The transition point of thermal resistances versus heat fluxes is significantly delayed with the heat flux exceeding 300 W/cm2, beyond which thermal resistances are only slightly increased. EVC not only improves temperature uniformity on the evaporator and fin base surfaces, but also evens the temperature distribution along the fin height direction to increase the fin efficiency. Inclination angles and charge ratios are combined to affect the thermal performance of EVC. An optimal charge ratio of 0.3 was recommended. EVC can be used for ultra-high heat flux and larger heater area conditions.  相似文献   

6.
The current study investigates capillary-fed boiling of water from porous sintered powder wicks used in emerging high-effective-conductivity vapor chamber heat spreaders intended for management of hot spots with heat fluxes exceeding 500 W cm?2. Characterization of 1 mm thick wicks composed of 100 μm sintered copper particles is performed in a test facility which replicates the capillary feeding conditions that occur in such devices. Boiling curves are obtained for a 5 mm × 5 mm heated input area, along with high-speed in-situ visualization of the evaporation/boiling processes. Understanding the vapor formation regimes is essential to predictive modeling of the observed characteristics. Schematic representations of such regimes along the boiling curves are presented for homogeneous and modified wick structures. In general, incipience of boiling in sintered-powder wicks reduces the effective thermal resistance and, for small heat input areas, does not cause liquid starvation due to a capillary limitation. The thermal performance enhancement provided by two different augmentation methods is quantified and explained in terms of the observed vapor formation characteristics. Patterns fabricated within the sintered powder create multi-scale wicks with regions of different pore size. These patterns reduce thermal resistance throughout the boiling regime by increasing the permeability to vapor exiting the wick, as confirmed by visualization of the preferential vapor venting from the surface. At the highest heat fluxes investigated prior to dryout, a thin liquid film is observed to form in the recessed patterned areas at the base of the wick. Integration of copper-coated carbon nanotubes on to the sintered powder reduces the required superheat for boiling incipience, thus reducing the overall thermal resistance at low heat fluxes. Evaporation and boiling regime heat transfer predictions from several available correlations are compared to the current results, and are shown to corroborate the conclusions regarding vapor permeability.  相似文献   

7.
An experimental investigation of the performance of thermosyphons charged with water as well as the dielectric heat transfer liquids FC-84, FC-77 and FC-3283 has been carried out. The copper thermosyphon was 200 mm long with an inner diameter of 6 mm, which can be considered quite small compared with the vast majority of thermosyphons reported in the open literature. The evaporator length was 40 mm and the condenser length was 60 mm which corresponds with what might be expected in compact heat exchangers. With water as the working fluid two fluid loadings were investigated, that being 0.6 ml and 1.8 ml, corresponding to approximately half filled and overfilled evaporator section in order to ensure combined pool boiling and thin film evaporation/boiling and pool boiling only conditions, respectively. For the Fluorinert? liquids, only the higher fill volume was tested as the aim was to investigate pool boiling opposed to thin film evaporation. Generally, the water-charged thermosyphon evaporator and condenser heat transfer characteristics compared well with available predictive correlations and theories. The thermal performance of the water-charged thermosyphon also outperformed the other three working fluids in both the effective thermal resistance as well as maximum heat transport capabilities. Even so, FC-84, the lowest saturation temperature fluid tested, shows marginal improvement in the heat transfer at low operating temperatures. All of the tested Fluorinert? liquids offer the advantage of being dielectric fluids, which may be better suited for sensitive electronics cooling applications and were all found to provide adequate thermal performance up to approximately 30–50 W after which liquid entrainment compromised their performance.  相似文献   

8.
This work presents visualization of the evaporation/boiling process and thermal measurements of operating horizontal transparent heat pipes. The heat pipes consisted of a two-layered copper mesh wick consisting of 100 and/or 200 mesh screens, a glass tube and water as the working fluid. Experimental results indicated that nucleate boiling was prompted for a wick having a fine 200-mesh bottom layer. When the fluid charge approximately equaled the pore volume in the wick, the water–vapor interface receded into more curved menisci with increasing heat load Q. Thus, larger capillary forces and evaporation areas were attained to meet the increasing need of liquid supply and evaporation rate at the water–vapor interface. At Q = 40 and 45 W, the water film became less than 100 μm and the nucleate boiling observed at lower heat loads disappeared. Optimal thermal characteristics with smallest thermal resistances across the evaporator and lowest overall temperature distributions were found for such a wick/charge combination. Under a smaller charge, partial dry-out was observed in the evaporator. Under a larger charge, liquid recession with increasing heat load was limited and bubbles grew and burst violently at high heat loads. The effects of different wicks and fluid charges on the evaporation/boiling characteristics were discussed.  相似文献   

9.
Two special biporous wicks are adopted in stainless-steel–ammonia loop heat pipes (LHPs) with flat evaporator to enhance their heat transfer performances. The experimental results demonstrate that thermal and hydraulic characteristics of the wick with porosity of 69% (in LHP 2) are better than that of the wick with porosity of 65% (in LHP 1). The maximum heat loads of LHP 1 and LHP 2 could, respectively, reach 120 W (heat flux 11.8 W/cm2) and 130 W (12.8 W/cm2) at the allowable evaporator temperature below 60 °C. Meanwhile, they can start up at heat load as low as 2.5 W. The LHPs show very fast and smooth response to heat load and operate stably without obvious temperature oscillation. The total thermal resistances of the LHPs vary between 1.47 and 0.33 °C/W at heat load ranging from 10 to 130 W.  相似文献   

10.
This paper presents an experimental investigation of a direct expansion air conditioner working with R407C as an R22 alternative. Experiments are conducted on a vapor compression refrigeration system using air as a secondary fluid through both the evaporator and the condenser. The influences of the evaporator air inlet temperature (20–32 °C), the evaporator air flow rate (250–700 m3/h) and the evaporator air humidity ratio (9 and 14.5 gwv/kga) at the condenser air temperature and volume flow rate of 35 °C and 850 m3/h, respectively on the system performance are investigated. Experimental results revealed that the evaporator air inlet temperature has pronounced effects on the air exit temperatures, pressures of the evaporator and the condenser, cooling capacity, condenser heat load, compressor pressure ratio and the COP of both refrigerants at humidity ratios of 9 and 14.5 gwv/kga. Significant effects of the evaporator air flow rate are also gathered on the preceding parameters at the same values of mentioned-humidity ratios. The best performance, in terms of operating parameters as well as COP, can be accomplished using R22 compared to R407C. The inlet humidity ratio affects dramatically the performance of vapor compression system using R22 and R407C. The raising up humidity ratio from 9 to 14.5 gwv/kga leads to an augmentation in the average cooling capacity by 29.4% and 38.5% and an enhancement in the average COP by 30% and 24.1% for R22 and R407C, respectively.  相似文献   

11.
A visualization study of pool boiling at atmospheric pressure from top-covered enhanced structures was conducted for a dielectric fluorocarbon liquid (PF 5060). The single layer enhanced structures studied were fabricated in copper and quartz, had an overall size of 10 mm × 10 mm and were 1 mm thick. The parameters investigated in this study were the heat flux (in the range of 1–11 W/cm2 for copper and 1–4 W/cm2 for quartz) and the width of the microchannels (65–360 μm). A high-speed camera (maximum frame rate 1000 f/s at full resolution) with attached magnifying lens allowed precise observation of the evaporation process in the bottom and top channels. The heat transfer performance of the enhanced structures was found to depend weakly on the channel width. The internal evaporation has a significant contribution to the total heat dissipation, especially at low heat fluxes.  相似文献   

12.
Flow boiling of refrigerant HFC-134a in a multi-microchannel copper cold plate evaporator is investigated. The heat transfer coefficient is measured locally for the entire range of vapor qualities starting from subcooled liquid to superheated vapor. The test piece contains 17 parallel, rectangular microchannels (0.762 mm wide) of hydraulic diameter 1.09 mm and aspect ratio 2.5. The design of the test facility is validated by a robust energy balance as well as a comparison of single-phase heat transfer coefficients with results from the literature. Results are presented for four different mass fluxes of 20.3, 40.5, 60.8, and 81.0 kg m?2 s?1, which correspond to refrigerant mass flow rates of 0.5–2.0 g s?1, and at three different pressures 400, 550 and 750 kPa corresponding to saturation temperatures of 8.9, 18.7, and 29 °C. The wall heat flux varies from 0 to 20 W/cm2 in the experiments. The heat transfer coefficient is found to vary significantly with refrigerant inlet quality and mass flow rate, but only slightly with saturation pressure for the range of values investigated. The peak heat transfer coefficient is observed for a vapor quality of approximately 20%.  相似文献   

13.
A 3D model has been developed for investigating heat and mass transfer in a flat evaporator of a copper–water loop heat pipe. It takes into account heat-transfer processes in the active zone, the barrier layer of the wick, the wall and the compensation chamber. The problem was solved by the finite difference method with the use of a nonuniform grid adapted to the configuration of the flat evaporator and its geometric peculiarities. Investigations have been carried out for understanding the effect of the heating zone size on heat distribution in the evaporator. The heating area was 9 cm2 with a uniform heat supply and 1 cm2 with a concentrated one. Numerical simulation has been performed for a heat load range from 20 to 1100 W. Data have shown that a decrease in the heating area at a fixed heat load results in both increasing temperature on the evaporator wall under the heater and local wick draining in the active zone. The results of the model have been verified using results of experimental tests.  相似文献   

14.
The present paper experimentally investigates the effect of non-condensable gases (NCGs) on the thermal performance of the miniature loop heat pipe (mLHP). Copper mLHP with the flat disk shaped evaporator, 30 mm diameter and 10 mm thick, and fin-and-tube type condenser, 50 mm length and 10 mm height, located at a distance of 150 mm was used in the study. The device which was designed for the thermal control of computer microprocessor was capable of transferring maximum heat load of 70 W while maintaining evaporator temperature below 100 °C limit for electronic equipments. Water was used as the heat transfer fluid inside the mLHP. All the tests were conducted with the evaporator and condenser at the same horizontal level. Simple methods were devised to detect and purge the generated NCG out of the loop heat pipe without disassembling the system. Experiments conducted to classify the trends in the NCG production and storage revealed that majority of the gas is generated in the first few thermal runs and is accumulated in the compensation chamber. Sensitivity tests show that overall effect of the NCG is to elevate the steady-state operating temperature of the loop and increase the start-up time required by the evaporator to achieve stable conditions for the given heat load. As an outcomes of the research work, it can be concluded that mLHPs are more tolerable to the NCGs than conventional heat pipes due to the presence of compensation chamber that can accumulate most of the released gas without major performance degradation.  相似文献   

15.
《Applied Thermal Engineering》2007,27(14-15):2426-2434
This paper presents measurements and predictions of a heat pipe-equipped heat exchanger with two filling ratios of R134a, 19% and 59%. The length of the heat pipe, or rather thermosyphon, is long (1.5 m) as compared to its diameter (16 mm). The airflow rate varied from 0.4 to 2.0 kg/s. The temperatures at the evaporator side of the heat pipe varied from 40 to 70 °C and at the condenser part from 20 to 50 °C. The measured performance of the heat pipe has been compared with predictions of two pool boiling models and two filmwise condensation models. A good agreement is found. This study demonstrates that a heat pipe equipped heat exchanger is a good alternative for air–air exchangers in process conditions when air–water cooling is impossible, typically in warmer countries.  相似文献   

16.
Experiments were performed to investigate the heat transfer mechanism in the evaporator section of non-stepped rotating heat pipes at moderate rotational speeds of 2000–4000 rpm or accelerations of 40g–180g, and evaporator heat fluxes up to 100 kW/m2. The thermal resistance of the evaporator section as well as that of the condenser section was examined by measuring the axial temperature distributions of the flow in the core region of the heat pipe and along the wall of the heat pipe. The experimental results indicated that natural convection heat transfer occurred in the liquid layer of the evaporator section under these conditions. The heat transfer measurements were in reasonable agreement with the predictions from an existing rotating heat pipe model that took into account the effect of natural convection in the evaporator section.  相似文献   

17.
A novel cryogenic heat pipe, oscillating heat pipe (OHP), which consists of an 4 × 18.5 cm evaporator, a 6 × 18.5 cm condenser, and 10 cm length of adiabatic section, has been developed and experimental characterization conducted. Experimental results show that the maximum heat transport capability of the OHP reached 380 W with average temperature difference of 49 °C between the evaporator and condenser when the cryogenic OHP was charged with liquid nitrogen at 48% (v/v) and operated in a horizontal direction. The thermal resistance decreased from 0.256 to 0.112 while the heat load increased from 22.5 to 321.8 W. When the OHP was operated at a steady state and an incremental heat load was added to it, the OHP operation changed from a steady state to an unsteady state until a new steady state was reached. This process can be divided into three regions: (I) unsteady state; (II) transient state; and (III) new steady state. In the steady state, the amplitude of temperature change in the evaporator is smaller than that of the condenser while the temperature response keeps the same frequency both in the evaporator and the condenser. The experimental results also showed that the amplitude of temperature difference between the evaporator and the condenser decreased when the heat load increased.  相似文献   

18.
This paper presents the experimental heat transfer evaluation during subcooled and saturated boiling of ammonia–lithium nitrate solution in a fusion plate heat exchanger, acting as a vapor generator under operating conditions representative of single-effect absorption machines. The solution flow rate and outlet temperature were modified in the ranges of 0.041–0.083 kg/s and 78–97 °C, respectively. The region where vapor bubbles begin to arise is estimated using a correlation for the wall superheat required for the onset of nucleate boiling. Results show that subcooled boiling is present in the generator. The initial boiling temperature is about 3.1 °C lower than the saturation temperature. The influence of the heat and mass fluxes on the boiling heat transfer coefficient is analyzed. The paper offers a correlation for the Nusselt number, including the subcooled and saturated boiling regions.  相似文献   

19.
The authors have conducted measurements of liquid–vapor behavior in the vicinity of a heating surface for saturated and subcooled pool boiling on an upward-facing copper surface by using a conductance probe method. A previous paper [A. Ono, H. Sakashita, Liquid–vapor structure near heating surface at high heat flux in subcooled pool boiling, Int. J. Heat Mass Transfer 50 (2007) 3481–3489] reported that thicknesses of a liquid rich layer (a so-called macrolayer) forming in subcooled boiling are comparable to or thicker than those formed near the critical heat flux (CHF) in saturated boiling. This paper examines the dryout behavior of the heating surface by utilizing the feature that a thin conductance probe placed very close to the heating surface can detect the formation and dryout of the macrolayer. It was found that the dryout of the macrolayer formed beneath a vapor mass occurs in the latter half of the hovering period of the vapor mass. Two-dimensional measurements conducted at 121 grid points in a 1-mm × 1-mm area at the center of the heating surface showed that the dryout commences at specific areas and spreads over the heating surface as the heat flux approaches the CHF. Furthermore, transient measurements of wall void fractions from nucleate boiling to transition boiling were conducted under the transient heating mode, showing that the wall void fraction has small values (<10%) in the nucleate boiling region, and then steeply increases in the transition boiling region. These findings strongly suggest that the macrolayer dryout model is the most appropriate model of the CHF for saturated and subcooled pool boiling of water on upward facing copper surfaces.  相似文献   

20.
The thermal resistance to heat transfer into the evaporator section of heat pipes and vapor chambers plays a dominant role in governing their overall performance. It is therefore critical to quantify this resistance for commonly used sintered copper powder wick surfaces, both under evaporation and boiling conditions. The objective of the current study is to measure the dependence of thermal resistance on the thickness and particle size of such surfaces. A novel test facility is developed which feeds the test fluid, water, to the wick by capillary action. This simulates the feeding mechanism within an actual heat pipe, referred to as wicked evaporation or boiling. Experiments with multiple samples, with thicknesses ranging from 600 to 1200 μm and particle sizes from 45 to 355 μm, demonstrate that for a given wick thickness, an optimum particle size exists which maximizes the boiling heat transfer coefficient. The tests also show that monoporous sintered wicks are able to support local heat fluxes of greater than 500 W cm?2 without the occurrence of dryout. Additionally, in situ visualization of the wick surfaces during evaporation and boiling allows the thermal performance to be correlated with the observed regimes. It is seen that nucleate boiling from the wick substrate leads to substantially increased performance as compared to evaporation from the liquid free surface at the top of the wick layer. The sharp reduction in overall thermal resistance upon transition to a boiling regime is primarily attributable to the conductive resistance through the saturated wick material being bypassed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号