首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effects of adding 0.02 or 0.06 at.% Si to Al–0.06Sc–0.06Zr (at.%) are studied to determine the impact of Si on accelerating Al3(Sc,Zr) precipitation kinetics in dilute Al–Sc-based alloys. Precipitation in the 0.06 at.% Si alloy, measured by microhardness and atom-probe tomography (APT), is accelerated for aging times <4 h at 275 and 300 °C, compared with the 0.02 at.% Si alloy. Experimental partial radial distribution functions of the α-Al matrix of the high-Si alloy reveal considerable Si–Sc clustering, which is attributed to attractive Si–Sc binding energies at the first and second nearest-neighbor distances, as confirmed by first-principles calculations. Calculations also indicate that Si–Sc binding decreases both the vacancy formation energy near Sc and the Sc migration energy in Al. APT further demonstrates that Si partitions preferentially to the Sc-enriched core rather than the Zr-enriched shell in the core/shell Al3(Sc,Zr) (L12) precipitates in the high-Si alloy subjected to double aging (8 h/300 °C for Sc precipitation and 32 days/400 °C for Zr precipitation). Calculations of the driving force for Si partitioning confirm that: (i) Si partitions preferentially to the Al3(Sc,Zr) (L12) precipitates, occupying the Al sublattice site; (ii) Si increases the driving force for the precipitation of Al3Sc; and (iii) Si partitions preferentially to Al3Sc (L12) rather than Al3Zr (L12).  相似文献   

2.
The present work was undertaken to improve superplastic ductility of friction-stir welded joints of ultrafine-grained (UFG) Al–Mg–Sc–Zr alloy. In order to suppress the undesirable abnormal grain growth, which typically occurs in the heavily deformed base material, the UFG material was produced at elevated temperature. It was suggested that the new processing route could reduce dislocation density in the UFG structure and thus enhance its thermal stability. It was found, however, that the new approach resulted in a relatively high fraction of low-angle boundaries which, in turn, retarded grain-boundary sliding during subsequent superplastic tests. Therefore, despite the successful inhibition of the abnormal grain growth in the base-material zone, the superplastic deformation was still preferentially concentrated in the fully-recrystallized stir zone of the material. As a result, the maximal elongation-to-failure did not exceed 700%.  相似文献   

3.
Laws of the formation of substructure and of changes in the hardness and in the mechanical properties have been established for sheets of 1545K alloy obtained by tension according to different technologies at various accumulated strains. With an increase in cold deformation (e cold) from 0 to 2.64, the yield stress of cold-worked sheets increases from 355 to 466 МPа and the relative elongation decreases insignificantly from 4 to 3.5%. The maximum strength with σ0.2 = 410 МPа, σu = 460 МPа, and δ = 6.5% is provided by annealing at 150°C for 1 h of the sheets obtained via the technology with the maximum fraction of cold deformation (e cold = 2.64). After annealing at 300°C for 30 min, a twofold increase in the plasticity is observed without a significant reduction in the strength characteristics a follows: σ0.2 = 385 МPа, σu = 436 МPа and δ = 13%. It has been shown that the level of mechanical properties is determined by the substructure that is formed inside deformed grains during annealing.  相似文献   

4.
The effect of substituting 0.01 at.% Er for Sc in an Al–0.06Zr–0.06Sc–0.04Si (at.%) alloy subjected to a two-stage aging treatment (4 h/300 °C and 8 h/425 °C) is assessed to determine the viability of dilute Al–Si–Zr–Sc–Er alloys for creep applications. Upon aging, coherent, 2–3 nm radius, L12-ordered, trialuminide precipitates are created, consisting of an Er- and Sc-enriched core and a Zr-enriched shell; Si partitions to the precipitates without preference for the core or the shell. The Er substitution significantly improves the resistance of the alloy to dislocation creep at 400 °C, increasing the threshold stress from 7 to 10 MPa. Upon further aging under an applied stress for 1045 h at 400 °C, the precipitates grow modestly to a radius of 5–10 nm, and the threshold stress increases further to 14 MPa. These chemical and size effects on the threshold stress are in qualitative agreement with the predictions of a recent model, which considers the attractive interaction force between mismatching, coherent precipitates and dislocations that climb over them. Micron-size, intra- and intergranular, blocky Al3Er precipitates are also present, indicating that the solid solubility of Er in Al is exceeded, leading to a finer-grained microstructure, which results in diffusional creep at low stresses.  相似文献   

5.
Al alloys with additions of Sc and/or Zr exhibit a reasonably stable grain structure due to a uniform distribution of coherent Al3(Sc,Zr) precipitates that forms at temperatures >300 °C. These precipitates are stable up to the solution treatment temperature and are able to pin subgrain and grain boundaries, inhibiting grain coarsening. The crystallographic structure of these precipitates presents a L12 superstructure coherent with the face-centred cubic Al matrix. Changes in the orientation relation between precipitates and the matrix are described in deformed, recovered and partially recrystallized samples of extrusions of AW7010 (AlZn6Mg2Cu2). The coherency of the intracrystalline Al3(Sc,Zr) precipitates present in the extrusions is lost by severe deformation performed by an equal channel angular pressing process, which produced a fine-grained microstructure. The deformed sample recovers, forming a subgrain structure with restored coherency of the Al3(Sc,Zr) precipitates. Rapid heating to 470 °C causes partial secondary recrystallization, which transforms the precipitates within the recrystallized grains into incoherent groups of particles that maintain their original orientation with each other.  相似文献   

6.
Al—Mg—Sc—Zr合金的再结晶   总被引:12,自引:1,他引:12  
研究了添加微量Sc,Zr的Al-Mg合金的再结晶行为,结果表明:Al-Mg-Sc-Zr合金的再结晶起始温度为400℃,细小、弥散基体共格的析出相对位错和亚昌的钉扎作用是合金再结晶温度大幅度提高的主要原因,再结晶形核机制为亚聚合机制。  相似文献   

7.
The formation of highly coherent double-shelled L1_2 nano-precipitates in dilute Al–Er–Sc–Zr alloys was investigated with the combined use of Cs-corrected transmission electron microscopy characterization and first-principles energetics calculations. The double-shelled nano-precipitates are primarily featured with an Er-rich core surrounded by a Sc-rich inner shell and a Zr-rich outer shell. First-principles energetics analyses based on the classic homogenous nucleation theory suggested that once forms, this double-shell structure can be thermally stable. The predominant formation of this double-shell structure has thus both profound kinetic and thermodynamic origins. Its formation and stability preference to all other possible L1_2 nano-structures would become more pronounced as its size increases, no matter what the solute ratio and aging temperature of interest.  相似文献   

8.
The effects of minor contents of Zr and Sc on the microstructures and mechanical properties of Al–Mg–Si–Cu–Cr–V alloy were studied. The results show that the effects of minor Zr and Sc on the as-cast grain refinement in the ingots, the improvement in the strength of the as-extruded alloys and the restriction of high angle grain boundaries in the aged alloys can be sorted as Al3Sc>Al3(Zr,Sc)>Al3Zr. None of them could stop the nucleation of recrystallization, but Al3(Zr,Sc) phase is a more effective inhibitor of dislocation movement compared to Al3Sc in the aged alloys. Compared with the mechanical properties of the aged alloy added only 0.15% Sc, the joint addition of Zr and Sc to the alloy leads to a very slight decrease in strength with even no cost of ductility. Taking both the production cost and the little bad influence on mechanical properties into consideration, an optimal content of Zr and Sc in the Al–Mg–Si–Cu–Cr–V alloy to substitute 0.15% Sc is 0.13% Zr+0.03% Sc.  相似文献   

9.
A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al–Mg–Sc–Zr alloy. By considering the powder–solid transformation, temperature- dependent thermal properties, latent heat of phase transformations and molten pool convection, the effects of laser power, point distance and hatch spacing on the temperature distribution, molten pool dimensions and residual stress distribution were investigated. Then, the effects of laser power, point distance and hatch spacing on the microstructure, density and hardness of the alloy were studied by the experimental method. The results show that the molten pool size gradually increases as the laser power increases and the point distance and hatch spacing decrease. The residual stress mainly concentrates in the middle of the first scanning track and the beginning and end of each scanning track. Experimental results demonstrate the accuracy of the model. The density of the samples tends to increase and then decrease with increasing laser power and decreasing point distance and hatch spacing. The optimum process parameters are laser power of 325–375 W, point distance of 80–100 μm and hatch spacing of 80 μm.  相似文献   

10.
11.
《Acta Materialia》1999,47(8):2581-2592
Trace additions of Zr to Al alloys inhibit recrystallization through the formation of spherical and coherent Al3Zr (β′) precipitates. Recently, observations have been made of faceted β′ precipitates in several hot deformed Al alloys, although no systematic experimental study of either the causes of the formation of such precipitates or their orientation relationships with the Al matrix has so far been reported. A detailed examination of the orientation relationships shows that the cube-on-cube orientation relationship existing between spherical, coherent β′ precipitates and the Al matrix does not hold good for the faceted β′ particles and that the faceted β′ particles are twin-related with the matrix. It is shown that the twin-related β′ particles are not incoherent, but bound by large facets fully coherent with the matrix, and that such particles are associated with fairly significant coherency strains. A probable shape of the faceted β′ is also described.  相似文献   

12.
《Acta Materialia》2008,56(6):1182-1195
The transformation of Al3Zr (L12) and Al3(Zr1−xTix) (L12) precipitates to their respective equilibrium D023 structures is investigated in conventionally solidified Al–0.1Zr and Al–0.1Zr–0.1Ti (at.%) alloys aged isothermally at 500 °C or aged isochronally in the range 300–600 °C. Titanium additions delay neither coarsening of the metastable L12 precipitates nor their transformation to the D023 structure. Both alloys overage at the same rate at or above 500 °C, during which spheroidal L12 precipitates transform to disk-shaped D023 precipitates at ca. 200 nm in diameter and 50 nm in thickness, exhibiting a cube-on-cube orientation relationship with the α-Al matrix. The transformation occurs heterogeneously on dislocations because of a large lattice parameter mismatch of the D023 phase with α-Al. The transformation is very sluggish and even at 575 °C coherent L12 precipitates can remain untransformed. Mechanisms of microstructural coarsening and strengthening are discussed with respect to the micrometer-scale dendritic distribution of precipitates.  相似文献   

13.
The effect of impurities of Fe and Si on the microstructure and kinetics of the change in the hardness during annealing of the cast Al–0.2% Zr–0.1% Sc and Al–0.2% Zr–0.1% Sc–0.2% Y alloys has been studied. It has been found that the presence of the impurities of Fe and Si in the Al–0.2% Zr–0.1% Sc alloy leads to a partial binding of scandium into the (Al, Fe, Si, Sc) and (Al, Fe, Sc) phases of crystallization origin and to the corresponding depletion of the aluminum solid solution of Sc. It has been shown that as a result, the strengthening is significantly decreases upon annealing. The addition of 0.2% Y into the Al–0.2% Zr–0.1% Sc alloy with impurities of Fe and Si leads to the formation of the Al3Y and (Al, Y, Fe, Si) phases, whereas Sc is completely dissolved in the aluminum solid solution. It has been shown that the addition of Y leads to an increase in the thermal stability of the alloys during annealing at temperatures of 250, 300, and 370°C and eliminates the negative effect of impurities of Fe and Si.  相似文献   

14.
A new precipitation-hardenable wrought magnesium alloy based on the Mg–Zn system with an excellent combination of high tensile yield strength, good ductility and low tensile-compression anisotropy has been developed. The Mg–2.4Zn–0.1Ag–0.1Ca(–0.16Zr) (at.%) alloys show significantly higher age-hardening responses compared to that of the binary Mg–2.4Zn alloy due to the increased number density and refinement of rod-like MgZn2 precipitates. The addition of Zr to the Mg–2.4Zn–0.1Ag–0.1Ca alloy resulted in a significant refinement of the grain size. A high number density of precipitates was observed in the Mg–2.4Zn–0.1Ag–0.1Ca–0.16Zr alloy in both the as-extruded condition and following isothermal ageing at 160 °C. The tensile yield strength of the as-extruded and aged alloys was 289 and 325 MPa, with an elongation of 17% and 14%, respectively. These alloys show relatively low compression and tensile anisotropy. The origins of these unique mechanical properties are discussed based on the detailed microstructural investigation.  相似文献   

15.
《Intermetallics》1999,7(1):101-108
A study of the binary Al-Sc phase diagram has been performed by means of thermodynamic calculations and experimental measurements. The enthalpy of formation of all intermetallic compounds has been determined and a cursory examination of the phase equilibria carried out, for compositions greater than 40 at% Sc. Two new invariant reactions have been identified in the Sc-rich part of the diagram: L ↔ (βSc)+Sc2Al at 1185°C and (βSc) ↔ Sc2Al+(αSc) at 970°C. A coherent set of Gibbs energy expressions for all the phases in the system has been generated by a least square optimisation procedure using all the experimental data available. The overall agreement is satisfactory but some uncertainties still persist, especially concerning the ScAl phase, owing to experimental difficulties.  相似文献   

16.
对Al-0.35Sc合金中加入同含量的微量过渡族元素Zr,Ti,采用正交实验测定了这些含Zr,Ti元素的Al-Sc合金的高温持久寿命,并应用扫描电镜,观察了断口形貌,分析断裂机理。  相似文献   

17.
《Scripta materialia》2004,50(5):583-588
Zr52.5Ti5Cu17.9Ni14.6Al10 metallic glass machining chips were characterized using SEM, X-ray diffraction and nano-indentation. Above a threshold cutting speed, oxidation of the Zr produces high flash temperatures and causes crystallization. The chip morphology was unique and showed the presence of shear bands, void formation and viscous flow.  相似文献   

18.
Al–Sc and Al–Ti semi-infinite targets were impacted by high-speed projectiles with velocities of 0.8, 2 and 4 km s?1, respectively. The results show that deep columned craters with hemispherical bottoms were formed in the Al–Ti target, while near-hemispheroidal or relatively shallower craters formed in the Al–Sc alloy. It is concluded that different microstructures of Al–Sc and Al–Ti alloys, including different grain sizes and secondary particles precipitated in the matrix, result in their having greatly different capabilities of resisting impact. Residual microstructures of different samples are further discussed. It is possible that, due to the very large amount of energy imported into the target by high-speed impact, secondary Al3Sc lost its coherency and consequently recrystallization occurred.  相似文献   

19.
A technology is developed for single-pass friction stir welding (FSW) of 11- and 35-mm-thick plates of Al–Mg–Sc alloys. The microstructural and mechanical heterogeneity of the welded joints is investigated. The welded joints obtained under the optimum welding conditions are free from macrodefects. The strength of the welded joint equals 98% of the strength of the parent metal, which is higher than the strength of fusion-welded joints. It is concluded that the FSW of thick plates of Al–Mg–Sc alloy can be used efficiently in practice.  相似文献   

20.
《Scripta materialia》2004,50(4):511-516
It was shown that an Al–5.7%Mg–0.32%Sc–0.3%Mn alloy subjected to severe plastic deformation through equal-channel angular extrusion exhibits superior superplastic properties in the temperature range of 250–500 °C at strain rates ranging from 1.4 × 10−5 to 1.4 s−1 with a maximum elongation-to-failure of 2000% recorded at 450 °C and an initial strain rate of 5.6 × 10−2 s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号