首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the inactivation of a panel of eight test bacteria (two Escherichia coli strains, Salmonella enteritidis, Salmonella typhimurium, Shigella sonnei, Shigella flexneri, Pseudomonas fluorescens and Staphylococcus aureus) by high pressure in the presence of bovine lactoferrin (500 microg/ml), pepsin hydrolysate of lactoferrin (500 microg/ml), lactoferricin (20 microg/ml) and nisin (100 IU/ml). None of these compounds, at the indicated dosage, were bactericidal when applied at atmospheric pressure, except nisin, which caused a low level of inactivation of the bacteria. Under high pressure, lactoferrin, lactoferrin hydrolysate and lactoferricin displayed bactericidal activity against some of the test bacteria, however, the former had a narrower bactericidal spectrum than the two latter compounds. The bactericidal efficiency and spectrum of nisin were also enhanced under high pressure. The sensitisation of the test bacteria to these antimicrobials under pressure was transient, since no bactericidal activity was observed when bacteria were pressure treated before exposure to the compounds. We propose a mechanism of pressure-promoted uptake of these antimicrobial proteins and peptides in gram-negative bacteria to explain this sensitisation.  相似文献   

2.
The objectives of this research were to develop and characterize edible chitosan film containing lactoferrin as a natural antimicrobial agent, and to investigate the combination effects of lactoferrin with lysozyme in chitosan film against the growth of Escherichia coli O157:H7 and Listeria monocytogenes. Chitosan films containing lactoferrin, lysozyme, or nisin were fabricated, and the antimicrobial concentrations were 0.5, 1, or 2 mg in a circular disc of chitosan film. Three concentrations of lactoferrin or EDTA (0.28, 0.56, or 1.12 mg per disc) were also incorporated into the chitosan film containing lysozyme to investigate the combination effects of lactoferrin. The water barrier properties of the chitosan films containing lactoferrin were characterized. The antimicrobial activities against E. coli O157:H7 and L. monocytogenes were determined using the agar diffusion assay and cell count assay. The chitosan films containing lactoferrin less than 1 mg per disc did not alter the water vapor permeability of the chitosan film. Although the film containing lysozyme exhibited significant antimicrobial activity, the incorporation of lactoferrin alone into chitosan film did not exhibit significant antimicrobial activity against both E. coli O157:H7 and L. monocytogenes. However, the combination of lactoferrin with lysozyme-containing chitosan film significantly decreased the growth of E. coli O157:H7, exhibiting a comparable effect to that of the combination of EDTA with lysozyme (P < 0.05). Furthermore, the combination of lactoferrin with lysozyme in chitosan film exhibited greater reduction in the growth of L. monocytogenes than did the combination EDTA with lysozyme, resulting in an approximate 3-log reduction.  相似文献   

3.
Hui  Zhang  Hewen  Wei  Yinan  Cui  Guoqun  Zhao  Fengqin  Feng 《Journal of food science》2009,74(7):M418-M421
ABSTRACT:  Monolaurin is a nontraditional antimicrobial agent that possesses better antimicrobial activities but causes no health problems to consumers, but the use of monolaurin in the food industry as a preservative is still limited. Using a microtiter plate assay, the minimum inhibitory concentrations for monolaurin were 25 μg/mL against  Escherichia coli , 12.5 μg/mL against  Staphylococcus aureus , and 30 μg/mL against  Bacillus subtilis . The interaction with commonly used antimicrobials revealed that monolaurin and nisin acted synergistically against the test microorganisms, monolaurin in combination with sodium dehydroacetate or ethylenediaminetetraacetic acid was synergistic against  E. coli  and  B. subtilis  but not  S. aureus , and monolaurin combined with calcium propionate or sodium lactate showed no synergistic effects against any test microorganism. The interaction with food components revealed that the antibacterial effectiveness of monolaurin was reduced by fat or starch while the monolaurin activity remained unchanged in the presence of protein. This study contributes to a better understanding on the use of monolaurin as a nontraditional preservative in food products. Results from this study suggest the potential use of monolaurin as a nontraditional preservative in combination with commonly used antimicrobials, such as nisin, sodium dehydroacetate, or ethylenediaminetetraacetic acid, and suggest that the antibacterial effectiveness of monolaurin may be reduced significantly in high-fat or low-starch food products.  相似文献   

4.
The activity of novobiocin against Escherichia coli ATCC 25922 and three E. coli strains that were isolated from cases of bovine mastitis was determined in timekill studies in the presence of bovine lactoferrin. Lactoferrin alone did not affect the growth of any of the strains of E. coli. A combination of 1.0 mg/ml of lactoferrin and novobiocin at 1/16x minimum inhibitory concentration (MIC) was bactericidal for E. coli ATCC 25922. When the concentration was increased to 3.0 mg/ml of lactoferrin, novobiocin was bactericidal at 1/64x MIC. Among the mastitis strains tested, 6789 and 6806 were more susceptible to killing by novobiocin than was strain 6800. Strains 6789 and 6806 were killed when treated with novobiocin concentrations of 2, 1/2, and 1/4x MIC. When these strains were also treated with lactoferrin at 3.0 mg/ml, there was a bacteriostatic effect at novobiocin concentrations of 1/8 and 1/16x MIC for strains 6789 and 6800. Strain 6806 appeared to be more susceptible to the combination of lactoferrin and novobiocin as was evidenced by a bactericidal effect over the 24-h testing period. The combination treatment with cephapirin and lactoferrin showed that there was a synergistic bactericidal effect against all of the E. coli strains tested. These studies indicate that lactoferrin can potentiate the activity of antibiotics against Gram-negative bacteria.  相似文献   

5.
Carvacrol and eugenol were encapsulated in micellar nonionic surfactant solutions to increase active component concentrations in the aqueous phase and used to treat two strains of Listeria monocytogenes (Scott A and 101) and two strains of Escherichia coli O157:H7 (4388 and 43895) grown as biofilms in a Centers for Disease Control and Prevention reactor. L. monocytogenes biofilms were grown in two different growth media, 1:20 TSB and Modified Welshimer's broth (MWB), while E. coli O157:H7 was grown in M9. In general, L. monocytogenes strains were more resistant to both micelle-encapsulated antimicrobials than E. coli O157:H7 strains. The two antimicrobials were equally effective against both strains of E. coli O157:H7, decreasing viable counts by 3.5 to 4.8 log CFU/cm(2) within 20 min. For both bacteria, most of the bactericidal activity took place in the first 10 min of antimicrobial exposure. Biofilm morphology and viability were assessed by the BacLight RedoxSensor CTC Vitality kit and confocal scanning laser microscopy, revealing an increasing number of dead cells when biofilms were treated with sufficiently high concentrations of carvacrol- or eugenol-loaded micelles. This study demonstrates the effectiveness of the application of surfactant-encapsulated essential oil components on two pathogen biofilm formers such as E. coli O157:H7 and L. monocytogenes grown on stainless steel coupons.  相似文献   

6.
The efficacy and stability against Listeria monocytogenes of nisin and lysozyme encapsulated in phospholipid liposomes was evaluated. Antimicrobial-containing liposomes were prepared by hydrating dried lipids with buffer containing nisin, nisin plus the fluorescence probe calcein, or calcein and lysozyme. Mixtures were then centrifuged and sonicated, and encapsulated liposomes were collected using size-exclusion chromatography. Antimicrobial concentration in liposomes was determined by bicinchoninic acid assay prior to determination of antimicrobial activity against strains of L. monocytogenes. When nisin was encapsulated in liposomes, protein concentrations of 0.39, 0.27, and 0.23 mg/ml for phosphatidylcholine (PC), PC-cholesterol (7:3), and PC-phosphatidylglycerol (PG)-cholesterol (5:2:3), respectively, were obtained. Encapsulation of nisin with calcein yielded protein concentrations of 0.35, 0.39, and 0.28 mg/ml for PC, PC-cholesterol, and PC-PG-cholesterol, respectively. Encapsulation of calcein with lysozyme resulted in protein concentrations of 0.43, 0.26, and 0.19 mg/ml for PC, PC-cholesterol, and PC-PG-cholesterol, respectively. Encapsulated nisin in 100% PC and PC-cholesterol liposomes inhibited bacterial growth by >2 log CFU/ml compared with free nisin. Growth inhibition with liposomal lysozyme was strain dependent, with greater inhibition observed for strains 310 and Scott A with PC-cholesterol and PC-PG-cholesterol liposomes. Inhibition of L. monocytogenes indicated the potential of liposomes to serve as delivery vehicles for antimicrobials in foods while improving stability of antimicrobials.  相似文献   

7.
The antimicrobial effect of thyme essential oil (EO) at 0.3%, 0.6%, or 0.9%, nisin at 500 or 1000IU/g, and their combination against Listeria monocytogenes was examined in both tryptic soy broth (TSB) and minced beef meat. Thyme EO at 0.3% possessed a weak antibacterial activity against the pathogen in TSB, whereas at 0.9% showed unacceptable organoleptic properties in minced meat. Thus, only the level of 0.6% of EO was further examined against the pathogen in minced meat. Treatment of minced beef meat with nisin at 500 or 1000IU/g showed antibacterial activity against L. monocytogenes, which was dependent on the concentration level of nisin and the strains used. Treatment of minced beef meat with EO at 0.6% showed stronger inhibitory activity against L. monocytogenes than treatment with nisin at 500 or 1000IU/g. All treatments showed stronger inhibitory activity against the pathogens at 10 degrees C than at 4 degrees C. The combined addition of EO at 0.6% and nisin at 500 or 1000IU/g showed a synergistic activity against the pathogen. Most efficient among treatments was the combination of EO at 0.6% with nisin at 1000IU/g, which decreased the population of L. monocytogenes below the official limit of the European Union recently set at 2logcfu/g, during storage at 4 degrees C.  相似文献   

8.
Recontamination of cooked ready-to-eat (RTE) chicken and beef products with Listeria monocytogenes has been a major safety concern. Natural antimicrobials in combinations can be an alternative approach for controlling L. monocytogenes. Therefore, the objectives of this study were to evaluate the inhibitory activities against L. monocytogenes of nisin (6,400 IU/ ml), grape seed extract (GSE; 1%), and the combination of nisin and GSE both in tryptic soy broth with 0.6% yeast extract (TSBYE) and on the surface of full-fat turkey frankfurters. TSBYE was incubated at 37 degrees C for 72 h and turkey frankfurters at 4 or 10'C for 28 days. Inocula were 6.7 or 5 log CFU per ml or g for TSBYE or frankfurters, respectively. After 72 h in TSBYE, nisin alone did not show any inhibitory activity against L. monocytogenes. The combination of nisin and GSE gave the greatest inhibitory activity in both TSBYE and on turkey frankfurters with reductions of L. monocytogenes populations to undetectable levels after 15 h and 21 days, respectively. This combination of two natural antimicrobials has the potential to control the growth and recontamination of L. monocytogenes on RTE meat products.  相似文献   

9.
Bacterial growth during food transport and storage is a problem that may be addressed with packaging materials that release antimicrobials during food contact. In a series of five experiments, EDTA, lauric acid (LA), nisin, and combinations of the three antimicrobial agents were incorporated into a corn zein film and exposed to broth cultures of Listeria monocytogenes and Salmonella Enteritidis for 48 h (sampled at 2, 4, 8, 12, 24, and 48 h). Four experiments used starting cultures of 10(8) CFU/ml in separate experiments tested against each bacterium; the fifth experiment examined the inhibitory effect of selected antimicrobial agents on Salmonella Enteritidis with an initial inoculum of 10(4) CFU/ml. L. monocytogenes cell numbers decreased by greater than 4 logs after 48 h of exposure to films containing LA and nisin alone. No cells were detected for L. monocytogenes (8-log reduction) after 24-h exposure to any film combination that included LA. Of all film agent combinations tested, none had greater than a 1-log reduction of Salmonella Enteritidis when a 10(8)-CFU/ml broth culture was used. When a 10(4) CFU/ml of Salmonella Enteritidis initial inoculum was used, the films with EDTA and LA and EDTA, LA, and nisin were bacteriostatic. However, there was a 5-log increase in cells exposed to control within 24 h. The results demonstrate bacteriocidal and bacteriostatic activity of films containing antimicrobial agents.  相似文献   

10.
Antimicrobial activity of reuterin individually or in combination with nisin against different food-borne Gram-positive and Gram-negative pathogens in milk was investigated. Reuterin (8 AU/ml) exhibited bacteriostatic activity against Listeria monocytogenes, whereas its activity was slightly bactericidal against Staphylococcus aureus at 37 degrees C. Higher bactericidal activity was detected against Escherichia coli O157:H7, Salmonella choleraesuis subsp. choleraesuis, Yersinia enterocolitica, Aeromonas hydrophila subsp. hydrophila and Campylobacter jejuni. A significant synergistic effect on L. monocytogenes and a slight additive effect on S. aureus after 24 h at 37 degrees C were observed when reuterin was combined with nisin (100 IU/ml). The combination of reuterin with nisin did not enhance the antimicrobial effect of reuterin against Gram-negative pathogens.  相似文献   

11.
Nisin or nisin combined with EDTA was used to treat fresh beef. Beef cubes (2.5 by 2.5 by 2.5 cm) that were inoculated with approximately 7 log CFU/ml of Listeria monocytogenes Scott A or Escherichia coli O157:H7 505 B were dipped in the following solutions: (i) H2O, (ii) HCl, (iii) nisin, (iv) EDTA, or (v) nisin combined with EDTA, respectively, for 10 min each, with an exception of one set of control beef samples without treatment. Beef samples were then drip-dried for 15 min, vacuum packaged, and stored at 4 degrees C for up to 30 days. The pH on beef after different treatments was not a key factor in preventing bacterial growth. Treatment with nisin or with nisin combined with EDTA reduced the population of L. monocytogenes by 2.01 and 0.99 log CFU/cm2 as compared to the control, respectively, under the conditions of vacuum package and storage at 4 degrees C for up to 30 days. However, the effect of nisin and nisin combined with EDTA against E. coli O157:H7 505 B was marginal at 1.02 log CFU/cm2 and 0.8 log CFU/cm2 reductions, respectively.  相似文献   

12.
To develop a nisin- and lysozyme-based antimicrobial treatment for use with processed ham and bologna, in vitro experiments were conducted to determine whether inhibition enhancing interactions occur between the antimicrobials lysozyme, chrisin (a commercial nisin preparation), EDTA, NaCl and NaNO2. Inhibitory interactions were observed between a number of agents when used against specific pathogenic and spoilage bacteria. The observed interactions included lysozyme with EDTA (Enterococcus faecalis and Weissella viridescens), chrisin with EDTA (all Gram-positive organisms), EDTA with NaCl (Escherichia coli, Salmonella enterica serovar Typhimurium, Serratia grimesii), EDTA with nitrite (E. coli, Lactobacillus curvatus, Leuconostoc mesenteroides, Listeria monocytogenes, S. Typhimurium), chrisin with nitrite (Lc. mesenteroides, L. monocytogenes), and NaCl with nitrite (S. Typhimurium, Shewanella putrefaciens). Previous reports have described interactions between nisin with EDTA that resulted in enhanced antimicrobial effect against Gram-negative bacteria, or lysozyme with nisin against Gram-positive bacteria. These interactions were not observed in these experiments. We observed that unlike previous studies, these experiments were conducted on growing cells in nutrient broth, rather than under conditions of nutrient limitation. We propose that screening of antimicrobials for use in food systems in nutrient-deficient systems is inappropriate and that new protocols should be developed.  相似文献   

13.
Variability among microorganisms in barotolerance has been demonstrated at genus, species, and strain levels. Identification of conditions and additives that enhance the efficacy of ultrahigh pressure (UHP) against important foodborne microorganisms is crucial for maximizing product safety and stability. Preliminary work indicated that FD&C Red No. 3 (Red 3), a xanthene derivative, was bactericidal and acted synergistically with UHP against Lactobacillus spp. The objective of this study was to determine the antimicrobial efficacy of Red 3 and other xanthene derivatives, alone and combined with UHP, against spoilage and pathogenic bacteria in citrate-phosphate buffer (pH 7.0). Xanthene derivatives tested were fluorescein, Eosin Y, Erythrosin B, Phloxine B, Red 3, and Rose Bengal. Halogenated xanthene derivatives (10 ppm) were effective at reducing Listeria monocytogenes survivors but ineffective against Escherichia coli O157:H7. When combined with UHP (400 MPa, 3 min), the presence of derivatives enhanced inactivation. Because Red 3 was the only xanthene derivative to produce synergistic inactivation of both pathogens, further studies using this colorant were warranted. Efficacy of Red 3 against gram-positive bacteria (Lactobacillus plantarum and L. monocytogenes) was concentration dependent (1 to 10 ppm). E. coi O157: H7 strains were resistant to Red 3 concentrations up to 300 ppm. When Red 3 was combined with UHP, the lethality against gram-positive and gram-negative bacteria was dose dependent, with synergy being significant for most strains at > or = 3 ppm. Additional gram-positive and gram-negative bacteria showed lethalities similar to those observed for L. plantarum or L. monocytogenes, and E. coli O157:H7, respectively. Red 3 is a potentially useful additive to enhance the safety and stability of UHP-treated food products.  相似文献   

14.
The effect of nisin, lysozyme and lysozyme combined with disodium ethylenediaminetetraacetate salt (EDTA) for inhibiting the growth of spoilage micro‐organisms in buffalo meat was investigated. Prior to packaging, the samples were alternatively dipped in solutions containing different concentrations of nisin, lysozyme and combinations of a pre‐fixed amount of lysozyme and different concentrations of EDTA. The packed meat samples were stored at 4 °C, and the microbial changes were monitored for a period of 8 days. The best results, in terms of microbial shelf‐life extension, were obtained by dipping the meat steaks in a solution containing a combination of 0.5% of lysozyme and 2% of EDTA. This treatment was able to reduce the growth of all the investigated bacteria and showed a bactericidal effect on Brochotrix thermosphacta during the entire period of storage.  相似文献   

15.
The inhibitory activity of lactocin 705/AL705 (2133 arbitrary units per ml (AU ml(-1))), two bacteriocins produced by Lactobacillus curvatus CRL705 and nisin (1066AU ml(-1)) produced by Lactococcus lactis CRL1109 in combination with chelating agents against Escherichia coli strains in TSB medium at 21 and 6 degrees C was investigated. Treatment with EDTA (500 and 1000 mm) and Na lactate (800 mm) alone produced a variable effect depending on the strain, Na lactate being inhibitory against E. coli NCTC12900 at both assayed temperatures while EDTA (1000 mm) led to its inactivation only at 6 degrees C. Direct and deferred strategies using EDTA and Na lactate showed that the direct addition of bacteriocins and chelators was not as effective as compared to deferred treatments. When the deferred treatment effectiveness was evaluated at 6 degrees C, the use of EDTA (500 and 1000 mm) and Na lactate (800 mm) in combination with lactocin 705/AL705 demonstrated to be the most inhibitory strategy against both E. coli strains. Nevertheless, treatments with chelators and bacteriocins was highly dependent upon strain sensitivity. Permeabilization of the outer membrane of E. coli strains with EDTA and Na lactate combined with lactocin 705/AL705 showed to be valuable in controlling this foodborne bacteria at low temperatures.  相似文献   

16.
Reduction of the antimicrobial efficacy of lysozyme-chelator combinations against two Escherichia coli O157:H7 strains on addition of mineral salts was studied. The objective of the study was to determine the effect of type and concentration of mono-, di-, and trivalent mineral salts on the antimicrobial effectiveness of lysozyme and various chelators against E. coli O157:H7. Seven salts (Al3+, Ca2+, Fe2+, Fe3+, K+, Mg2+, and Na+) at 1 to 10 mM were added to aqueous solutions of lysozyme and disodium ethylenediamine tetraacetic acid (EDTA), disodium pyrophosphate (DSPP), or pentasodium tripolyphosphate (PSTPP) at pH 6, 7, or 8 and applied to cultures of E. coli O157:H7 strains 932 and H1730. Inhibitory activity of lysozyme chelator combinations against both strains was completely lost after addition of > or = 1 mM Ca2+ and Mg2+ at pH 7 and 8. At pH 6, antimicrobial activity of lysozyme-EDTA against both strains was retained in the presence of calcium or magnesium cations. DSPP-lysozyme inhibited strain H1730 at pH 6 despite the presence of Mg2+. Concentrations above 4 mM Fe2+ neutralized activity of all lysozyme-chelator combinations. Reversal of inhibition by lysozyme-chelator complexes by the monovalent Na+ and K+ ions depended on E. coli O157:H7 strain type. Neither monovalent cation reversed inhibition of strain 932. However, Na+ and K+ reversed lysozyme-chelator inhibition of strain H1730. The addition of > or = 1 mM Fe3+ or Al3+ was effective in reversing inhibition of both strains by lysozyme and EDTA at pH 6, 7, and 8. Isothermal titration calorimetry was used to determine the amount of ion-specific competitive binding of free cations by EDTA-lysozyme combinations. A mechanistic model for the antimicrobial functionality of chelator-lysozyme combinations is proposed.  相似文献   

17.
This study highlighted combinations of chemical stresses that could decrease or eliminate Listeria monocytogenes and Pseudomonas spp. surviving in food processing plants. Strains of L. monocytogenes, Pseudomonas fragi, and Pseudomonas fluorescens isolated from processing environments (meat and milk) were grown at 20 degrees C up to the early stationary phase. The strains were then subjected to 30 min of physicochemical treatments. These treatments included individual or combined acid (acetic acid), alkaline (NaOH), osmotic (NaCl), and biocides (fatty acids) challenges. Survival of the strains was studied after individual or combined acid (acetic acid), alkaline (NaOH), osmotic (NaCl), and biocides (monolaurin, lauric acid) challenges. Individual pH shocks had lower efficiencies than those used in combinations with other parameters. The treatment pH 5.4 followed by pH 10.5 had a low efficiency against L. monocytogenes. The opposite combination, pH 10.5 followed by pH 5.4, led to a 3-log reduction of the L. monocytogenes population. Pseudomonas spp. strains were much more sensitive than L. monocytogenes, and population reductions of 5 and 8 log (total destruction), respectively, were observed after the same treatments. As for L. monocytogenes, the combination pH 10.5 followed by pH 5.4 is more deleterious than the opposite. Whatever the bacterial species, the most efficient treatments were combinations of alkaline, osmotic, and biocide shocks. For instance, the combination pH 10.5 and 10% NaCl plus biocides showed reductions of 5 to 8 log for both bacteria. The origins of the observed lethal effects are discussed.  相似文献   

18.
The antimicrobial activity of eugenol microemulsions (eugenol encapsulated in surfactant micelles) in ultrahigh-temperature pasteurized milk containing different percentages of milk fat (0, 2, and 4%) was investigated. Antimicrobial microemulsions were prepared from a 5% (wt) aqueous surfactant solution (Surfynol 485W) with 0.5% (wt) eugenol. Two strains each of Listeria monocytogenes and Escherichia coli O157:H7 previously shown to be the least and most resistant to the microemulsion in microbiological media were used to inoculate sterile milk (10(4) CFU/ml). Samples were withdrawn and plated at 0, 1, 3, 6, 12, and 24 h for enumeration. Microemulsions completely prevented growth of L. monocytogenes for up to 48 h in skim milk and reduced both strains of E. coli O157:H7 to less than detectable levels in less than 1 h. Similarly, in 2% fat milk, eugenol-Surfynol combinations reduced both strains of E. coli O157:H7 to less than detectable levels in less than 1 h but only increased the lag phase of both strains of L. monocytogenes. In full-fat milk (4% fat), microemulsions inhibited growth of the least resistant strains of L. monocytogenes and E. coli but were ineffective against the two resistant strains. Unencapsulated eugenol was slightly more or as inhibitory as microemulsions against target pathogens. Results were attributed to diffusional mass transport of antimicrobials from microemulsions to the macroemulsion (milk). Results suggest that food composition, especially fat level, may affect the efficiency of targeting of foodborne pathogens with surfactant-encapsulated antimicrobials.  相似文献   

19.
《Food microbiology》2003,20(2):243-253
The effects of antimicrobial substances including nisin, acetic acid, lactic acid, potassium sorbate and chelators (disodium ethylenediamine tetraacetic acid [EDTA] and sodium hexametaphosphate [HMP]), alone or in combination and, with or without immobilization in calcium alginate gels, on the growth of Escherichia coli O157:H7 in ground beef were investigated. Results showed that acetic acid and potassium sorbate could inhibit the growth of E. coli O157:H7 effectively at 10°C and at 30°C. Both EDTA and HMP did not halt the growth of E. coli O157:H7. In an antimicrobial system immobilized with calcium alginate, most of the antimicrobials could not inhibit the growth of E. coli O157:H7 in ground beef at 10°C and at 30°C, with the exception of acetic acid and lactic acid. Immobilization did not enhance the effectiveness of acetic acid against E. coli O157:H7 in ground beef at 10°C and at 30°C (P>0.05) but it did enhance the effectiveness of lactic acid at 10°C. In a system combining different antimicrobials, treatment with nisin /EDTA or nisin/potassium sorbate at 10°C revealed a significantly lower population change of E. coli O157:H7 compared to samples treated with nisin, EDTA or potassium sorbate alone. The use of calcium alginate immobilization further enhanced the effectiveness of the combination system of nisin/EDTA, nisin/acetic acid and nisin/potassium sorbate on the growth of E. coli O157:H7 in ground beef at 10°C but it was not effective at 30°C.  相似文献   

20.
The antimicrobial activity of bioconversion extracts of EPA and DHA against a range of foodborne pathogenic bacteria was investigated. The bioconverted EPA and DHA exhibited antibacterial activities against four gram-positive bacteria, Bacillus subtilis, Listeria monocytogenes, Staphylococcus aureus (ATCC 6538) and S. aureus (KCTC 1916) and seven gram-negative bacteria, Enterobacter aerogenes, Escherichia coli, E. coli O157:H7, E. coli O157:H7 (human), Pseudomonas aeruginosa, Salmonella enteritidis and S. typhimurium. The growth inhibition by both bioconverted EPA and DHA was similar against gram-positive bacteria, while the bioconverted extract of DHA was more effective than EPA against gram-negative bacteria as determined by minimum inhibitory concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号