首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
光子晶体是一种具有光子能带及能隙的新型材料。其特有的性质,使光子晶体具有广阔的应用前景。本文基于固体物理学的基本原理,对光子晶体的理论基础进行了简单介绍,根据其特有结构,对光子晶体的特性做了一定分析,并结合现实需要,综述了光子晶体在光学等方面的应用。  相似文献   

2.
光子晶体是指具有光子带隙(PBG)特性的人造周期性电介质结构,有时也称为PBG光子晶体结构。按照光子晶体的光子禁带在空间中所存在的维数,可以将其分为一维光子晶体、二维光子晶体和三维光子晶体。光子晶体传感器应用包括应变传感器、温度传感器、化学传感器、光子晶体光纤传感器、长周期光纤光栅(LPFG)生物传感器、LPFG化学传感器等。本文从光子晶体传感器的概述、研究现状和应用几方面对光子晶体传感器的应用进展进行了综述,希望对光子晶体传感器有一个比较全面的了解。  相似文献   

3.
光子纳米喷流是光照射直径与波长相当或略大于波长的无损电介质微颗粒时,会在微颗粒后表面一定距离处形成高强度、紧聚焦光束。光子纳米喷流具有大于照射光的强度、最小的半高宽值能够小于衍射极限的光束宽度、传播超出倏势场区域和较强的背向散射等优异特性,在光信号增强、微纳加工与制造、超分辨光学成像、超灵敏捕获和探测等领域具有重要应用。该文首先介绍了光子纳米喷流的源头和发现;其次,对光子纳米喷流的模型、理论、形貌特征、实验测量和主要特性进行了阐述;再次,调研和讨论了光子纳米喷流的几个重要应用;最后,对光子纳米喷流进行了总结和展望。  相似文献   

4.
光子晶体光纤是一种包层由空气孔-石英沿轴向方向周期排列所构成的新型光纤。光子晶体光纤特殊的结构分布和特性,使其在降低光学噪声、陀螺尺寸、温度敏感性,提高陀螺精度和抗核辐射等方面,具有传统光纤陀螺不可比拟的优越性。本文综述了光子晶体光纤的概念、在光纤陀螺方面的独特优势,以及其在光纤陀螺应用方面的研究进展和前景。  相似文献   

5.
介绍了一个基于时域有限差分法(FDTD)的二维光子晶体器件设计软件PCCAD,所用的核心算法是时域有限差分法。与同类FDTD商业软件相比,特点在于其具有多种光子晶体结构编辑模板,多种点源、线源,先进的边界吸收技术及多种参数优化扫描等功能。快速傅里叶变换及Pade算法在软件设计中的应用使模拟更加精确、快速。软件适用于各种平面光子晶体的仿真设计,探索新的器件结构。最后,利用此软件设计了直波导、T型波导等二维平面光子晶体器件。  相似文献   

6.
《传感器世界》2013,(7):46-46
光子晶体材料因其对光子传播的调控性能而被称为“光半导体”,其研究和应用受到广泛关注。在国家自然科学基金委、科技部和中网科学院的支持下,中科院化学研究所绿色印刷院重点实验室的科研人员针对光予晶体的制备和应用开展了系统研究。  相似文献   

7.
光子晶体是80年代末提出的新概念和新材料,是一门涉及光学、材料和器件方面正蓬勃发展的有前途的新学科。回顾光子晶体的历史,介绍光子晶体的相关概念、物理特性、相关应用等。从光子晶体的理论研究、实验研究和应用三个方面展开论述。  相似文献   

8.
本文提出了光子扫描隧道显微技术的机理,对光子隧道效应进行了实验研究,在国内首次检测到了光子隧道效应,文中还介绍了我们所研制的一套光子扫描隧道显微镜系统的工作原理、设计思想及已解决的几个关键技术问题,并利用该系统获得了不镀膜、镀银膜、镀硫化锌膜这三种不同样品的实验数据,实验结果与光子隧道效应理论完全相符。  相似文献   

9.
微波频率测量及分析在军用、民用领域中有着重要战略地位和重大需求,并随着通信、雷达、电子对抗中工作频率的不断攀升而面临着前所未有的挑战。近年来以微波光子学为基础的光子型微波频率测量技术应运而生,因其在瞬时带宽、抗电磁干扰方面有着显著优势,得到了长足发展,并具有重要的理论意义和实用价值。针对目前主要研究的光子型微波频率测量方案,如微波光子扫频方案、频率 幅度映射方案、频率 空间映射方案、频率 时间映射方案、光子压缩感知方案、以及数字化测频方案等,介绍了其基本原理及实验方案,并对各种方案的研究现状与进展进行了梳理、分析和总结。最后,对光子型微波频率测量的趋势和前景进行了简要探讨和展望。  相似文献   

10.
除了电子,光子也可以传播和处理信息,以光子作为信息载体的新兴光子学工业和光子电脑已开始成形。新加坡科学家发现,在晶体中传递热的振动也可用来传播和处理信息,他们由此提出基于热和"声子"来设计新一代电脑的理论。  相似文献   

11.
In this decade, many techniques have been introduced to fabricate photonic crystal in optical applications. Most of the processes used to fabricate the photonic crystal are time consuming and not cost effective. This study demonstrates an efficient method to fabricate photonic crystals. A polymer-based photonic crystal slab has been developed by embedding mixture with a high dielectric constant. Photonic crystals have patterned structures in which periodicity of dielectric properties can manipulate electromagnetic waves. The operation wavelength is about half of the characteristic dimension. Technique of injection molding is applied to make polymer parts with the photonic crystal pattern. Then mixture of barium titanate powder and epoxy is embedded on the patterned structure of the polymer part. The contrast of dielectric coefficients between mixture and polymer can constitute a structure with some photonic band gap. By means of polymer processing, mass production of photonic crystal devices like optical switch, optical waveguide, optical filter and so forth can be realized in a cost effective way.  相似文献   

12.
Photonic crystals have attracted much attention from researchers because of the control over the propagation and emission of light and particular optical properties. In this paper, we reported on the design, fabrication and test of a two-dimensional polymer photonic crystal laser. First of all, a two-dimensional polymer photonic crystal laser with a triangle-lattice structure was described. Rhodamine 6G doped in PMMA was chosen as the gain material. Then, plane wave method based on the Maxwell equations was utilized to calculate the distribution of the photonic band gap. We calculated the band structure of a triangle lattice photonic crystal with a low refractive index. High resolution electron beam lithography combined with electroplating was used to fabricate the silicon nitride mask. A high aspect ratio two-dimensional photonic crystal laser was fabricated by X-ray lithography in one-step process to overcome the limitation of the thickness by the conventional methods to realize a real two-dimensional laser. Meanwhile, processes of sample preparations and fabrication were optimized in order to avoid the oxidation of the gain material and reduce the diffraction effect on the structures.  相似文献   

13.
为了克服电子计算的速率瓶颈,采用全光计算可以有效释放光子的巨大带宽资源,同时全光计算在全光通信网络中有着举足轻重的作用,集成光波导器件以其尺寸小、质量轻、功率代价小等优势已经成为最受关注的光子计算芯片资源之一。光子微积分运算是指在光域中直接对输入信号进行微积分数学运算。本文回顾了几种 常见的硅基光波导器件用于光子微积分运算的实现方案,包括高阶光子微分运算、分数阶微分运算、高阶常系数微分方程求解、可重构的一阶常系数微分方程求解,分别采用的硅基集成光子器件包括级联马赫增德尔干涉仪、掺杂型马赫增德尔干涉仪、级联微环谐振器和掺杂型微环谐振器。本文指出利用集成光波导器件来实现光子微积分器势必会成为光子微积分运算的重要发展方向。  相似文献   

14.
Abstract— With an ever‐increasing demand for bigger, brighter, and more‐efficient displays, the research into new display technologies is consistently vibrant and groundbreaking. In this paper, a new type of display material based on the electrical actuation of photonic crystals is described. This material, called Photonic Ink, is capable of reflecting bright and narrow bands of color tunable throughout the entire visible spectrum as well as into the UV or NIR. P‐Ink devices are switched at low voltage and display electrical bistability, leading to very low power consumption. The characteristics of the P‐Ink material make it a viable option for color‐based reflective‐display devices.  相似文献   

15.
The general FDTD method cannot calculate a complex object because of limit of the CFL conditions. CN-FDTD is an improvement on the FDTD method, and it can get rid of the CFL conditions and become wholly unconditional stable form. The advantage of the ICCG method for solving large sparse matrix will be taken in the CN-FDTD equation solving. ICCG method can accelerate iteration for numerical calculation, reduce memory overhead and be easy to be programmed at the same time. CN-ICCG–FDTD method researches the object model of plasma photonic crystals. Plasma photo crystals have unique properties. They can show mainly characteristics of plasma, or have the main properties of photonic crystals. Combination of plasma and photonic crystals makes it possible to adjust the plasma parameters to control the properties of photonic crystals. In this paper, it calculates characteristic parameters of plasma photonic crystals under different conditions, such as the reflection electric field, the transmission electric field, the transmission coefficient, to verify accuracy of CN-ICCG–FDTD method. The results of this paper prove the method is accurate, performs stably, and has certain advantages.  相似文献   

16.
Photonic networks-on-chip (PNoCs) have emerged as a promising alternative to the conventional metal-based networks-on-chip due to their advantages in bandwidth density, power efficiency and propagation speed. Existing works on PNoCs concentrate on architectures of photonic networks with the assumption that the underlying photonic infrastructure operates correctly and reliably. However, the key optical device in PNoC systems, microring resonators (MRs), is very sensitive to temperature fluctuation and manufacturing errors. A single MR failure can cause messages to be misdelivered or lost, which results in bandwidth loss or even complete failure of the whole system. In this paper, we present a fault-tolerant Photonic Network-on-Chip architecture, named FT-PHENIC, which uses minimal redundancy to ensure accuracy of packet transmission even after faulty microring resonators (MRs) are detected. FT-PHENIC is based on a microring fault-resilient photonic router (FTTDOR) and an adaptive path-configuration and routing algorithm. Simulation results show that FT-PHENIC tolerates MR faults quite well up until around when 20 % of the MRs have failed, and has minimal bandwidth degradation and power drawbacks.  相似文献   

17.
Abstract— Cholesteric liquid crystals automatically form one‐dimensional photonic crystals. For a photonic crystal in which light‐emitting moieties are embedded, unique properties such as microcavity effects and simultaneous light emission and light reflection can be expected. Three primary‐color photonic‐crystal films were prepared based on cholesteric liquid crystal in which fluorescent dye is incorporated. Microcavity effects, i.e., emission enhancement and spectrum narrowing, were observed. Two types of demonstration liquid‐crystal displays (LCDs) were fabricated using the prepared photonic‐crystal films in a backlight system. One is an area‐color LCD in which a single photonic‐crystal layer is used for each color pixel and the other is a full‐color TFT‐LCD in which three stacked photonic‐crystal layers are used as light‐conversion layers. The area‐color LCD was excited by using 365‐nm UV light, and the full‐color TFT‐LCD was excited by using 470‐nm blue LED light. Because of the photonic crystal's unique features that allow it to work as light‐emitting and light‐reflecting layers simultaneously, both LCDs demonstrate clear readable images even under strong ambient light, such as direct‐sunlight conditions, under which conventional displays including LCDs and OLED displays cannot demonstrate clear images. In particular, an area‐color LCD, which eliminated color filters, gives clear images under bright ambient light conditions even without backlight illumination. This fact suggests that a backlight system using novel photonic‐crystal layers will be suitable for energy‐efficient LCDs (e2‐LCDs), especially for displays designed for outdoor usage.  相似文献   

18.
Future high-performance computing (HPC) architectures will consist of whole parallel computing systems integrated on chip-level and boards mounted with lots of computing chips and chip-external main memory. Photonic networks on board and photonic network on chips (NoCs) offer the potential to fulfill the high bandwidth requirements in such systems. In addition they need less power, offer better EMC capabilities and can reduce cabling effort compared to electronic networks. Due to their non-blocking property Clos networks are frequently used in HPC architectures. Therefore we investigated how a photonic on-board Clos network can be realized using Coarse Wavelength-Division-Multiplexing (CWDM) techniques with state-of-the art components based on fiber technology. In addition we present a new photonic Clos NoC architecture based on Wavelength Interchanging (WI) elements, optical waveguide structures, mode-locked laser sources, nanophotonic microrings and passive optical deflection elements to reduce the number of switches. We discuss the benefits and drawbacks for using different optical technologies for such an architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号