首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
Patterning of photonic crystals to generate rationally designed color‐responsive materials has drawn considerable interest because of promising applications in optical storage, encryption, display, and sensing. Here, an inkjet‐printing based strategy is presented for noncontact, rapid, and direct approaches to generate arbitrarily patterned photonic crystals. The strategy is based on the use of water‐soluble biopolymer‐based opal structures that can be reformed with high resolution through precise deposition of fluids on the photonic crystal lattice. The resulting digitally designed photonic lattice formats simultaneously exploit structural color and material transience opening avenues for information encoding and combining functions of optics, biomaterials, and environmental interfaces in a single device.  相似文献   

2.
Nanomaterials are becoming increasingly widespread in consumer technologies, but there is global concern about the toxicity of nanomaterials to humans and the environment as they move rapidly from the research laboratory to the market place. With this in mind, it makes sense to intensify the nanochemistry community's global research effort on the synthesis and study of nanoparticles that are purportedly “green”. One potentially green nanoparticle that seems to be a most promising candidate in this context is silicon, whose appealing optical, optoelectronic, photonic, and biomedical attributes are recently gaining much attention. In this paper, we outline some of our recent contributions to the development of the growing field of silicon nanocrystals (ncSi) in order to stress the importance of continued study of ncSi as a green alternative to the archetypal semiconductor nanocrystals like CdSe, InAs, and PbS. While a variety of developments in synthetic methods, characterization techniques, and applications have been reported in recent years, the ability to prepare colloidally‐stable monodisperse ncSi samples may prove to have the largest impact on the field, as it opens the door to study and access the tunable size‐dependent properties of ncSi. Here, we summarize our recent contributions in size‐separation methods to achieve monodisperse samples, the characterization of size‐dependant property trends, the development of ncSi applications, and their potential impact on the promising future of ncSi.  相似文献   

3.
Two‐dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Nevertheless, recent rapid advances in 2D nanomaterials have raised important and exciting questions about their interactions with biological moieties. 2D nanoparticles such as carbon‐based 2D materials, silicate clays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) provide enhanced physical, chemical, and biological functionality owing to their uniform shapes, high surface‐to‐volume ratios, and surface charge. Here, we focus on state‐of‐the‐art biomedical applications of 2D nanomaterials as well as recent developments that are shaping this emerging field. Specifically, we describe the unique characteristics that make 2D nanoparticles so valuable, as well as the biocompatibility framework that has been investigated so far. Finally, to both capture the growing trend of 2D nanomaterials for biomedical applications and to identify promising new research directions, we provide a critical evaluation of potential applications of recently developed 2D nanomaterials.  相似文献   

4.
Polydopamine (PDA) is a major type of artificial melanin material with many interesting properties such as antioxidant activity, free‐radical scavenging, high photothermal conversion efficiency, and strong metal‐ion chelation. The high affinity of PDA to a wide range of metals/metal ions has offered a new class of functional metal‐containing polydopamine (MPDA) nanomaterials with promising functions and extensive applications. Understanding and controlling the metal coordination environment is vital to achieve desirable functions for which such materials can be exploited. MPDA nanomaterials with metal/metal ions as the active functions are reviewed, including their synthesis and metal coordination environment and their applications in catalysis, batteries, solar cells, capacitors, medical imaging, cancer therapy, antifouling, and antibacterial coating. The current trends, limitations, and future directions of this area are also explored.  相似文献   

5.
Stretchable electronics are attracting intensive attention due to their promising applications in many areas where electronic devices undergo large deformation and/or form intimate contact with curvilinear surfaces. On the other hand, a plethora of nanomaterials with outstanding properties have emerged over the past decades. The understanding of nanoscale phenomena, materials, and devices has progressed to a point where substantial strides in nanomaterial‐enabled applications become realistic. This review summarizes recent advances in one such application, nanomaterial‐enabled stretchable conductors (one of the most important components for stretchable electronics) and related stretchable devices (e.g., capacitive sensors, supercapacitors and electroactive polymer actuators), over the past five years. Focusing on bottom‐up synthesized carbon nanomaterials (e.g., carbon nanotubes and graphene) and metal nanomaterials (e.g., metal nanowires and nanoparticles), this review provides fundamental insights into the strategies for developing nanomaterial‐enabled highly conductive and stretchable conductors. Finally, some of the challenges and important directions in the area of nanomaterial‐enabled stretchable conductors and devices are discussed.  相似文献   

6.
Since the first experimental discovery of graphene 16 years ago, many other 2D layered nanomaterials have been reported. However, the majority of 2D nanostructures suffer from relatively complicated fabrication processes that have bottlenecked their development and their uptake by industry for practical applications. Here, the recent progress in sensing, photonic, and (opto‐)electronic applications of PtSe2, a 2D layered material that is likely to be used in industries benefiting from its high air‐stability and semiconductor‐technology‐compatible fabrication methods, is reviewed. The advantages and disadvantages of a range of synthesis methods for PtSe2 are initially compared, followed by a discussion of its outstanding properties, and industrial and commercial advantages. Research focused on the broadband nonlinear photonic properties of PtSe2, as well as reports of its use as a saturable absorber in ultrafast lasers, are then reviewed. Additionally, the advances that have been achieved in a range of PtSe2‐based field‐effect transistors, photodetectors, and sensors are summarized. Finally, a conclusion on these results along with the outlook for the future is presented.  相似文献   

7.
Half a century after its initial emergence, lanthanide photonics is facing a profound remodeling induced by the upsurge of nanomaterials. Lanthanide‐doped nanomaterials hold promise for bioapplications and photonic devices because they ally the unmatched advantages of lanthanide photophysical properties with those arising from large surface‐to‐volume ratios and quantum confinement that are typical of nanoobjects. Cutting‐edge technologies and devices have recently arisen from this association and are in turn promoting nanophotonic materials as essential tools for a deeper understanding of biological mechanisms and related medical diagnosis and therapy, and as crucial building blocks for next‐generation photonic devices. Here, the recent progress in the development of nanomaterials, nanotechnologies, and nanodevices for clinical uses and commercial exploitation is reviewed. The candidate nanomaterials with mature synthesis protocols and compelling optical uniqueness are surveyed. The specific fields that are directly driven by lanthanide doped nanomaterials are emphasized, spanning from in vivo imaging and theranostics, micro‐/nanoscopic techniques, point‐of‐care medical testing, forensic fingerprints detection, to micro‐LED devices.  相似文献   

8.
One-dimensional (1D) organic and organometallic nanomaterials are of considerable interests for both fundamental research and potential applications. They are likely to play critical roles in improving the efficiency of various electronic, photonic, biosensing devices, etc. In this context, the authors present a comprehensive review of current research on 1D organic and organometallic nanostructures. The synthetic strategies for achieving the 1D growth are elucidated by four categories: (1) template-based synthesis, (2) vapor-solid method, (3) solution-based self-assembly, and (4) dictation by the anisotropic nature. The unique thermal, optical, electronic, field emission properties and biocidal activity of 1D organic and organometallic nanostructures are consequently highlighted. Some promising applications in (integrated) molecular electronic, optoelectronic and photonic devices are also discussed.  相似文献   

9.
This review describes recent advances and applications in the field of organic photorefractive materials, an interesting area in the field of organic electronics and promising candidate for various aspects of photonic applications. We describe the current state of knowledge about the processes involved in the formation of photorefractive gratings in organic materials and focus on the chemical and photo‐physical aspects of the material structures employed in low glass‐transition temperature amorphous composites and organic photorefractive glasses. State‐of‐the art materials are highlighted and recent demonstrations of photonic applications relying on the reversible holographic nature of the photorefractive materials are discussed.  相似文献   

10.
One overall goal of this research was to examine types of naturally-occurring opals that exhibit photonic control to learn about previously-unknown properties of naturally occurring photonic control that may be developed for broader applications. Three different photon sources were applied consecutively to three different types of natural, flawless, gem-quality precious opals. Two photon sources were lasers (green and red) and one was simulated daylight tungsten white. As each type of precious opal was exposed to each of the photon sources, the respective refractions, reflections, and transmissions were studied. This research is the first to show that applying various pleochroic and laser photon sources to these types of opals revealed significant information regarding naturally occurring photonic control, metamaterials, spontaneous laser emissions, and microspheroid cluster (inter-PBG zone) boundary effects. Plus, minimizing ambient light and the use of low power photon sources were critical to observing the properties regarding this photonic materials research. This research yielded information applicable to the development of materials to advance applications and devices of photonics, phononics, optoelectronics, nanomaterials, and metamaterials.  相似文献   

11.
Many recent activities in the use of one‐dimensional nanostructures as photonic elements for optical information processing are explained by huge advantages that photonic circuits possess over traditional silicon‐based electronic ones in bandwidth, heat dissipation, and resistance to electromagnetic wave interference. Organic materials are a promising candidate to support these optical‐related applications, as they combine the properties of plastics with broad spectral tunability, high optical cross‐section, easy fabrication, as well as low cost. Their outstanding compatibility allows organic composite structures which are made of two or more kinds of materials combined together, showing great superiority to single‐component materials due to the introduced interactions among multiple constituents, such as energy transfer, electron transfer, exciton coupling, etc. The easy processability of organic 1D crystalline heterostructures enables a fine topological control of both composition and geometry, which offsets the intrinsic deficiencies of individual material. At the same time, the strong exciton‐photon coupling and exciton‐exciton interaction impart the excellent confinement of photons in organic microstructures, thus light can be manipulated according to our intention to realize specific functions. These collective properties indicate a potential utility of organic heterogeneous material for miniaturized photonic circuitry. Herein, focus is given on recent advances of 1D organic crystalline heterostructures, with special emphasis on the novel design, controllable construction, diverse performance, as well as wide applications in isolated photonic elements for integration. It is proposed that the highly coupled, hybrid optical networks would be an important material basis towards the creation of on‐chip optical information processing.  相似文献   

12.
The emergence of micro/nanomaterials in recent decades has brought promising alternative approaches in various biomedicine‐related fields such as pharmaceutics, diagnostics, and therapeutics. These micro/nanomaterials for specific biomedical applications shall possess tailored properties and functionalities that are closely correlated to their geometries, structures, and compositions, therefore placing extremely high demands for manufacturing techniques. Owing to the superior capabilities in manipulating fluids and droplets at microscale, microfluidics has offered robust and versatile platform technologies enabling rational design and fabrication of micro/nanomaterials with precisely controlled geometries, structures and compositions in high throughput manners, making them excellent candidates for a variety of biomedical applications. This review briefly summarizes the progress of microfluidics in the fabrication of various micro/nanomaterials ranging from 0D (particles), 1D (fibers) to 2D/3D (film and bulk materials) materials with controllable geometries, structures, and compositions. The applications of these microfluidic‐based materials in the fields of diagnostics, drug delivery, organs‐on‐chips, tissue engineering, and stimuli‐responsive biodevices are introduced. Finally, an outlook is discussed on the future direction of microfluidic platforms for generating materials with superior properties and on‐demand functionalities. The integration of new materials and techniques with microfluidics will pave new avenues for preparing advanced micro/nanomaterials with enhanced performance for biomedical applications.  相似文献   

13.
Ordered molecular materials are increasingly used in active electronic and photonic organic devices. In this progress report we discuss whether the self‐assembling properties and supramolecular structures of liquid crystals can be tailored to improve such devices. Recent developments in charge‐transporting and luminescent liquid crystals are discussed in the context of material requirements for organic light‐emitting devices, photovoltaics, and thin film transistors. We identify high carrier mobility, polarized emission, and enhanced output‐coupling as the key advantages of nematic and smectic liquid crystals for electroluminescence. The formation of anisotropic polymer networks gives the added benefits of multilayer capability and photopatternability. The anisotropic transport and high carrier mobilities of columnar liquid crystals make them promising candidates for photovoltaics and transistors. We also outline some of the issues in material design and processing that these applications demand. The photonic properties of chiral liquid crystals and their use as mirror‐less lasers are also discussed.  相似文献   

14.
The search for electron sources with simultaneous optimal spatial and temporal resolution has become an area of intense activity for a wide variety of applications in the emerging fields of lightwave electronics and attosecond science. Most recently, increasing efforts are focused on the investigation of ultrafast field‐emission phenomena of nanomaterials, which not only are fascinating from a fundamental scientific point of view, but also are of interest for a range of potential applications. Here, the current state‐of‐the‐art in ultrafast field‐emission, particularly sub‐optical‐cycle field emission, based on various nanostructures (e.g., metallic nanotips, carbon nanotubes) is reviewed. A number of promising nanomaterials and possible future research directions are also established.  相似文献   

15.
Single atom nonmetal 2D nanomaterials have shown considerable potential in cancer nanomedicines, owing to their intriguing properties and biocompatibility. Herein, ultrathin boron nanosheets (B NSs) are prepared through a novel top‐down approach by coupling thermal oxidation etching and liquid exfoliation technologies, with controlled nanoscale thickness. Based on the PEGylated B NSs, a new photonic drug delivery platform is developed, which exhibits multiple promising features for cancer therapy and imaging, including: i) efficient NIR‐light‐to‐heat conversion with a high photothermal conversion efficiency of 42.5%, ii) high drug‐loading capacity and triggered drug release by NIR light and moderate acidic pH, iii) strong accumulation at tumor sites, iv) multimodal imaging properties (photoacoustic, photothermal, and fluorescence imaging), and v) complete tumor ablation and excellent biocompatibility. As far as it is known, this is the first report on the top‐down fabrication of ultrathin 2D B NSs by the combined thermal oxidation etching and liquid exfoliation, as well as their application as a multimodal imaging‐guided drug delivery platform. The newly prepared B NSs are also expected to provide a robust and useful 2D nanoplatform for various biomedical applications.  相似文献   

16.
We review different routes for the generation of nanoporous metallic foams and films exhibiting well‐defined pore size and short‐range order. Dealloying and templating allows the generation of both 2D and 3D structures that promise a plasmonic response determined by material constituents and porosity. Viewed in the context of metamaterials, the ease of fabrication of samples covering macroscopic dimensions is highly promising, and suggests more in‐depth investigations of the plasmonic and photonic properties of this material system for photonic applications.  相似文献   

17.
Layered nanodisks with confined thickness and lateral size have been emerging as a unique type of two‐dimensional (2D) nanomaterials in recent years. Inheriting some properties of 2D nanosheets and meanwhile possessing the size‐confinement effect, these layered nanodisks exhibit unique optical, electronic, and chemical properties, which endow them with great promise in a wide range of applications. Here, the recent progress of layered nanodisks is introduced. The synthetic strategies, assembly, structural/compositional transformation, and applications of layered nanodisks are systematically described and discussed, with emphasis on their new appealing structures and functions. Finally, some perspectives and future research directions of this promising field are given.  相似文献   

18.
Artificial solids and thin films assembled from colloidal nanomaterials give rise to versatile properties that can be exploited in a range of technologies. In particular, solution‐based processes allow for the large‐scale and low‐cost production of nanoelectronics on rigid or mechanically flexible substrates. To achieve this goal, several processing steps require careful consideration, including nanomaterial synthesis or exfoliation, purification, separation, assembly, hybrid integration, and device testing. Using a ubiquitous electronic device – the field‐effect transistor – as a platform, colloidal nanomaterials in three electronic material categories are reviewed systematically: semiconductors, conductors, and dielectrics. The resulting comparative analysis reveals promising opportunities and remaining challenges for colloidal nanomaterials in electronic applications, thereby providing a roadmap for future research and development.  相似文献   

19.
Clay nanomaterials are an emerging class of 2D biomaterials of interest due to their atomically thin layered structure, charged characteristics, and well‐defined composition. Synthetic nanoclays are plate‐like polyions composed of simple or complex salts of silicic acids with a heterogeneous charge distribution and patchy interactions. Due to their biocompatible characteristics, unique shape, high surface‐to‐volume ratio, and charge, nanoclays are investigated for various biomedical applications. Here, a critical overview of the physical, chemical, and physiological interactions of nanoclay with biological moieties, including cells, proteins, and polymers, is provided. The state‐of‐the‐art biomedical applications of 2D nanoclay in regenerative medicine, therapeutic delivery, and additive manufacturing are reviewed. In addition, recent developments that are shaping this emerging field are discussed and promising new research directions for 2D nanoclay‐based biomaterials are identified.  相似文献   

20.
Ultrathin 2D nanomaterials possess promising properties due to electron confinement within single or a few atom layers. As an emerging class of functional materials, ultrathin 2D rare-earth nanomaterials may incorporate the unique optical, magnetic, and catalytic behaviors of rare-earth elements into layers, exhibiting great potential in various applications such as optoelectronics, magnetic devices, transistors, high-efficiency catalysts, etc. Despite its importance, reviews on ultrathin 2D rare-earth nanomaterials or related topics are rare and only focus on a certain family of ultrathin 2D rare-earth nanomaterials. This work is the first comprehensive review in this impressive field, which covers all families of ultrathin 2D rare-earth nanomaterials, illustrating their compositions, syntheses, and applications. After summarizing the current achievements, the challenges and opportunities of future research on ultrathin 2D rare-earth nanomaterials are evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号