首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to settle the problem of the corrosion between sea water and the steel adsorber for ammonia system, a split heat pipe type adsorption ice making test unit, which use compound adsorbent of CaCl2 and activated carbon to improve the adsorption performance, is designed and constructed. For this test unit there is mass recovery function between two beds and the CaCl2 in compound adsorbent per bed is 1.88 kg, and there is only one pump for the whole heating and cooling phase for adsorbers. Performances of this system are tested; the lowest evaporating temperature is as low as −42 °C. At the evaporating temperature of −35 and −25 °C, the cooling powers are 0.89 and 1.18 kW, respectively. At the evaporating temperature of −15 °C, its average cooling power is 1.37 kW, which corresponds coefficient of performance of refrigeration COP=0.41 and specific cooling power per kilogram CaCl2 of each adsorber SCP=731 W kg−1. The mass recovery process has improved SCP and COP for the system by 15.5 and 24.1%, respectively. Heat transfer performance is also improved by the split heat pipe construction; the average heat transfer coefficient for a whole cycle is 155.8 W m−2 °C−1.  相似文献   

2.
Adsorption performances and thermal conductivity were tested for three types of adsorbent: Pure CaCl2 powder, simple composite adsorbent and consolidated composite adsorbent. The simple composite adsorbents show better adsorption performance because the additive of expanded graphite in CaCl2 powder has restrained the agglomeration phenomenon in adsorption process and improved the adsorption performance of CaCl2. The consolidated composite adsorbent are suitable to be used as adsorbent for ice maker on fishing boats because they have higher thermal conductivity, larger volumetric cooling capacity, higher SCP values and better anti-sway performance than simple composite adsorbents. Thermal conductivity of the consolidated composite adsorbent is 6.5–9.8 W m−1 K−1 depending on the molding pressure, ranging from 5 to 15 MPa, which is about 32 times higher than the thermal conductivity of CaCl2 powder. The volumetric cooling capacity of consolidated composite adsorbent is about 52% higher than the best result obtained for CaCl2 at the evaporating temperature of −10 °C. The SCP of the consolidated adsorbent increases of about 353% than CaCl2 powder from simulation results at Tad=30 °C and Tev=−10 °C. The consolidated composite adsorbents have good anti-sway performance and they are not easy to be scattered out when the fishing boats sway on the sea.  相似文献   

3.
The cooling performance of a consolidated composite reactive bed made from expanded graphite impregnated with CaCl2 was experimentally assessed under different evaporation and heat sink temperatures. The compound presented a specific cooling power (SCP) higher than 1000 W kgSalt−1 at several studied conditions. The calculated coefficient of performance (COP) was about 0.35 when the amount of refrigerant consumed in the reaction was 0.80 kg kgSalt−1. Both SCP and COP changed with the cycle time, and thus, with the degree of the reaction. The synthesis time to maximise the SCP, under any studied condition, was about 5 min, and the absorbed quantity greatly varied among the different operation conditions. When compared to the time necessary to obtain an absorbed amount of 0.80 kg kgSalt−1, the synthesis time of 5 min could improve the SCP in about 15–68%, however, COP would be deployed in about 14–50%.  相似文献   

4.
In this paper, the adsorption and refrigerating performances of a composite adsorbent (S40) and its host microporous silica gel matrix (S0) are investigated comparatively in which water is used as refrigerant. The composite adsorbent is developed by impregnating the silica gel (S0) with calcium chloride. A lab-scale single-bed adsorption chiller system, functioning without any valve on its refrigerant circuit, is designed and used as test rig. The mass ratio (MR), defined as the ratio of the specific cooling power (SCP) of S40 to that of S0, is found to be higher than 2, while the COP has been improved by 25%, in average. The S40 has been tested to have, not only the capacity of adsorbing water vapour more than twice as much as the S0 does, but also, kinetically, to adsorb and desorb faster. The cycled amounts of refrigerant (CAR), calculated from measured isobaric adsorption levels, further show that the S40 can be regenerated at lower temperatures, with respect to S0.  相似文献   

5.
This paper describes the experiment carried out to analyze the performance of a refrigeration system in cascade with ammonia and carbon dioxide as working fluids. The effect of operation parameters, such as the evaporating temperature of the low temperature cycle, the condensing temperature of low temperature cycle, temperature difference in cascade heat exchanger and superheat degree, on the system performance was investigated. Performance of the cascade system with NH3/CO2 was compared with that of two-stage NH3 system and single-stage NH3 system with or without economizer. It was found that the COP of the cascade system is the best among all the systems, when the evaporating temperature is below −40 °C. Also, the cascade system performance is greatly affected by evaporating temperature, condensing temperature of low temperature cycle, temperature difference in cascade heat exchanger and is only slightly sensitive to superheat degree. All the experimental results indicate that the NH3/CO2 cascade system is very competitive in low temperature applications.  相似文献   

6.
Heat transfer of ice slurry flow based on ethanol–water mixture in a circular horizontal tube has been experimentally investigated. The secondary fluid was prepared by mixing ethanol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 °C). The heat transfer tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 22% depending on test performed. Measured heat transfer coefficients of ice slurry are found to be higher than those for single phase fluid, especially for laminar flow conditions and high ice mass fractions where the heat transfer is increased with a factor 2 in comparison to the single phase flow. In addition, experimentally determined heat transfer coefficients of ice slurry flow were compared to the analytical results, based on the correlation by Sieder and Tate for laminar single phase regime, by Dittus–Boelter for turbulent single phase regime and empirical correlation by Christensen and Kauffeld derived for laminar/turbulent ice slurry flow in circular horizontal tubes. It was found that the classical correlation proposed by Sieder and Tate for laminar forced convection in smooth straight circular ducts cannot be used for heat transfer prediction of ice slurry flow since it strongly underestimates measured values, while, for the turbulent flow regime the simple Dittus–Boelter relation predicts the heat transfer coefficient of ice slurry flow with high accuracy but only up to an ice mass fraction of 10% and Recf > 2300 regardless of imposed heat flux. For higher ice mass fractions and regardless of the flow regime, the correlation proposed by Christensen and Kauffeld gives good agreement with experimental results.  相似文献   

7.
The prototype of a novel silica gel–water adsorption chiller is built and its performance is tested in detail. The experimental results show that the refrigerating capacity (RC) and COP of the chiller are 7.15 and 0.38 kW, respectively, when the hot water temperature is 84.8 °C, the cooling water temperature is 30.6 °C, and the chilled water outlet temperature is 11.7 °C. The RC will reach 6 kW under the condition of 65 °C hot water temperature, 30.5 °C cooling water temperature and 17.6 °C chilled water temperature. The results confirm that this kind of adsorption chiller is an effective refrigerating machine though its performance is not as fine as the prediction results. Also it is well effectively driven by a low-grade heat source. Therefore, its applications to the low-grade heat source are much attractive.  相似文献   

8.
In this paper the experimental results of a lab-scale chilling module working with the composite sorbent SWS-1L (mesoporous silica gel impregnated with CaCl2) are presented. The interesting sorption properties of this material yield a high COP=0.6 that gives a promising alternative to the common zeolite or silica gel for application in solid sorption units driven by low temperature heat (T 100 °C). The measured low specific power of the device is a result of not optimised geometry of the adsorber and of the pelletised shape of the adsorbent. Heat transfer optimisation is currently under progress to increase the specific power. The experimental results are compared with those of a mathematic model able to describe the dynamic behaviour of the system. The model is used to study the influence of the main operating parameters on the system performance.  相似文献   

9.
The paper describes an experimental plant aimed at simulating and verifying the performances of a single-stage H2O–LiBr absorption machine. The machine is water cooled and it is supplied by hot water produced by an electrical boiler; it is possible to simulate different service conditions by varying the temperatures and the flow rate of water in the external circuits. Measurement facilities allow to record in real time all the main operating parameters of internal and external circuits (temperatures, pressures and flow rates). The paper illustrates the characteristics of the machine and of the plant and the results of various experimental campaigns. In particular, the acquisitions on the plant have tested different service conditions by varying the flow rate and the temperature of the supplying hot water; the energy and energy performances of the plant are presented and compared with data from literature and from a simulation code developed for the plant.The results show that the absorption machine can work, with acceptable efficiency, with input temperatures of about 65–70 °C; this result is interesting for a future supply of the machine with solar energy.  相似文献   

10.
We experimentally show that for the same heat exchanger inventory allocation, a four-bed adsorption chiller delivers a 12% higher ultimate cooling capacity than its two-bed counterpart. In addition it delivers a significantly improved quality of instantaneous cooling than a two-bed chiller at the same cooling capacity. The COP-enhancing feature of a passive heat recovery scheme that does not involve additional pumping action or valves is experimentally proven. It improves the COPs of a two-bed chiller and a four-bed chiller by as much as 38 and 25%, respectively, without any effect on their cooling capacities. The highest COPs achieved with a two-bed and four-bed chillers are 0.46±0.02 and 0.45±0.02, respectively. These are measured at a hot-water inlet temperature of 85 °C, cooling-water inlet temperature of 29.4 °C and chilled-water inlet temperature of 12.2 °C.  相似文献   

11.
An improved system of NH3–H2O–LiBr was proposed for overcoming the drawback of NH3–H2O absorption refrigeration system. The LiBr was added to NH3–H2O system anticipating a decrease in the content of water in the NH3–H2O–LiBr system. An equilibrium cell was used to measure thermal property of the ternary NH3–H2O–LiBr mixtures. The pressure–temperature data for their vapor–liquid equilibrium (VLE) data were measured at ten temperature points between 15–85 °C, and pressures up to 2 MPa. The LiBr concentration of the solution was chosen in the range of 5–60% of mass ratio of LiBr in pure water. The VLE for the NH3–H2O–LiBr ternary solution was measured statically. The experimental results show that the equilibrium pressures reduced by 30–50%, and the amount of component of water in the gas phase reduced greatly to 2.5% at T=70 °C. The experimental results predicted much better characteristics of the new ternary system than the NH3–H2O system for the applications.  相似文献   

12.
A thermodynamic cycle model is used to select an optimum adsorbent-refrigerant pair in respect of a chosen figure of merit that could be the cooling production (MJ m−3), the heating production (MJ m−3) or the coefficient of performance (COP). This model is based mainly on the adsorption equilibrium equations of the adsorbent–refrigerant pair and heat flows. The simulation results of 26 various activated carbon–ammonia pairs for three cycles (single bed, two-bed and infinite number of beds) are presented at typical conditions for ice making, air conditioning and heat pumping applications. The driving temperature varies from 80 °C to 200 °C. The carbon absorbents investigated are mainly coconut shell and coal based types in multiple forms: monolithic, granular, compacted granular, fibre, compacted fibre, cloth, compacted cloth and powder. Considering a two-bed cycle, the best thermal performances based on power density are obtained with the monolithic carbon KOH-AC, with a driving temperature of 100 °C; the cooling production is about 66 MJ m−3 (COP = 0.45) and 151 MJ m−3 (COP = 0.61) for ice making and air conditioning respectively; the heating production is about 236 MJ m−3 (COP = 1.50).  相似文献   

13.
This paper describes an experimental study on the convective heat transfer inside the scroll compressor. An experimental refrigeration system is composed with extensive instrumentations in the compressor that is operated at variable speeds. The 13 thermocouples installed inside the compressor monitor the temperatures of the scroll wrap during compression process of refrigerant. The temperature and the pressure of refrigerant at suction, and the pressure at discharge ports are measured, and applied to the numerical simulation as the operating condition parameters. The temperature measured at the discharge port is used to verify the simulation result with relevant heat transfer coefficient. This paper describes the effect of motion of the orbiting scroll on the convective heat transfer in the scroll wraps. Separate experiments are performed to investigate the heat transfer in such a peculiar physical condition. With this experimental result, the effect of the oscillation of the wall on the heat transfer is quantitatively analyzed and applied to the simulation of compression process in scroll compressor. The whole consecutive compression processes in the scroll compressor is simulated in detail by solving equations of mass and energy balance for the refrigerant. The modified heat transfer coefficient correlation considering the effect of motion of the orbiting scroll predicts the discharge temperature better than other typical heat transfer coefficients.  相似文献   

14.
In ammonia–water absorption refrigeration systems a purification process of the vapours produced in the generator is required. One type of equipment to carry out the purification process is a packed column. However, detailed experimental studies at the normal operating conditions found in ammonia–water absorption refrigeration systems have not been found. An experimental facility has been designed and built to study the ammonia–water rectification in packed columns. Experimental tests have been performed at the normal operating conditions found in the high-pressure stage of a small power ammonia–water absorption refrigeration system. In this paper, the experimental set-up is described and experimental results of the height equivalent to a theoretical plate (HETP) and the volumetric mass transfer coefficient of a rectifying section with the Sulzer BX packing are presented. The HETP values and the experimental mass transfer coefficients are compared with different data and correlations proposed in the literature; it has been found that the differences are appreciable.  相似文献   

15.
A bottle-sublimation cooler is an open-cycle cooler of novel design combining the advantages of Joule–Thomson and sublimation coolers. The store of a refrigerant is bottled without heat leakages at ambient temperature. Sublimation of the refrigerant solid phase is the cold-generating process in the cooler. The cooler design and a discovered effect of the solid phase spontaneous capillary-porous structuring provide autoadjustability of the system operational characteristics. The results of experimental investigations of the stored-carbon dioxide bottle-sublimation cooler are reported in this paper. The experimental set-up and procedure of the system principal parameters measurement are covered. Temperature, thermal and overall size-mass parameters of the cooler are measured and reported. Performance specification of the cooler, which had been used for refrigerating of the IR module of a star spectrophotometer during astronomical observations, is presented.  相似文献   

16.
CO2 flow condensation heat transfer coefficients and pressure drop are investigated for 0.89 mm microchannels at horizontal flow conditions. They were measured at saturation temperatures of −15 and −25 °C, mass fluxes from 200 to 800 kg m−2 s−1, and wall subcooling temperatures from 2 to 4 °C. Flow patterns for experimental conditions were predicted by two flow pattern maps, and it could be predicted that annular flow patterns could exist in most of flow conditions except low mass flux and low vapor quality conditions. Measured heat transfer coefficients increased with the increase of mass fluxes and vapor qualities, whereas they were almost independent of wall subcooling temperature changes. Several correlations could predict heat transfer coefficients within acceptable error range, and from this comparison, it could be inferred that the flow condensation mechanism in 0.89 mm channels should be similar to that in large tubes. CO2 two-phase pressure drop, measured in adiabatic conditions, increased with the increase of mass flux and vapor quality, and it decreased with the increase of saturation temperature. By comparing measured pressure drop with calculated values, it was shown that several correlations could predict the measured values relatively well.  相似文献   

17.
CO2 is environmentally friendly, safe and more suitable to ejector refrigeration cycle than to vapor compression cycle. Supersonic two-phase flow of CO2 in the diverging sections of rectangular converging–diverging nozzles was investigated. The divergence angles with significant variation of decompression were 0.076°, 0.153°, 0.306° and 0.612°. This paper presents experimental decompression phenomena which can be used in designing nozzles and an assessment of Isentropic Homogeneous Equilibrium (IHE). Inlet conditions around 6–9 MPa, 20–37 °C were used to resemble ejector nozzles of coolers and heat pumps. For inlet temperature around 37 °C, throat decompression boiling from the saturated liquid line, supersonic decompression and IHE solution were obtained for the two large divergence angles. For divergence angles larger than 0.306°, decompression curves for inlet temperature above 35 °C approached IHE curves. For divergence angles smaller than 0.306° or for nozzles with inlet temperature below 35 °C, IHE had no solution.  相似文献   

18.
General models for the design of the heat exchangers (absorber, generator, condenser and evaporator) of a prototype of an air-cooled absorption chiller of 2 kW for air-conditioning using the pair H2O–LiBr have been developed. An absorption machine of such characteristics has been constructed to be used as a test facility for validating the results obtained from the mathematical models developed. The discrepancies considering the heat exchanged between numerical results and experimental data are under 15% in most cases for all these components except the condenser, where the discrepancies are higher. The conclusions reported will lead to: (i) future improvements of the mathematical simulation models and (ii) improvements in the experimental infrastructure.  相似文献   

19.
Thermal heat driven adsorption systems have been gained considerable attention on the recent energy utilization trend. However, the drawbacks of these adsorption systems are their poor performance. It is urgently necessary to improve the system performance of the adsorption cycles. There are two major ways for the system performance improvement. One is to develop new adsorbent material well suited to low temperature heat regeneration. The other is to enhance heat and mass transfer in the adsorber/desorber heat exchanger. The objective of the paper is to investigate the system performance of an adsorption cycle. The cycle utilizes activated carbon fiber (ACF)/methanol as adsorbent/refrigerant pair. In this paper, specific cooling effect SCE and COP of the system are numerically evaluated from the adsorption equilibrium theory with different hot, cooling and chilled fluid inlet temperatures. It is confirmed that the influences of hot, cooling and chilled fluid inlet temperatures on the system performance are qualitatively similar to those of silica gel/water pair. Even though, the driving temperature levels of ACF/methanol and silica gel/water are different. There is an optimum condition for COP to reach at maximum for ACF/methanol pair. Particularly, the ACF/methanol system shows better performance with lower chilled fluid inlet temperature between −20 and 20 °C.  相似文献   

20.
A solar thermochemical prototype producing low-temperature cold has been built and tested during the summer and autumn 2005 in Perpignan, France. It cools a 560 L cold box down to about −25 °C using only low-grade heat produced by two simple flat plate solar collectors. The process involves two cascaded thermochemical systems using BaCl2 salt reacting with ammonia. Its working mode is discontinuous, as it alternates between one decomposition mode at high pressure (daytime) and one cold production mode at low pressure (nighttime). Experimental results prove the feasibility of this new concept of solar cold production, with temperatures as low as −30 °C, demonstrate its potential use in housing, by the acceptable size and weight of the system and show the system performances during the sunniest months of the year, with a rough solar coefficient of performance (COP) of about 0.031 over the test period. The major meteorological parameters influencing the process efficiency are the solar irradiation and the outside temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号