首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
为了对飞机驾驶舱后观察窗玻璃进行抗鸟撞设计,进行了后观察窗玻璃抗鸟撞试验,试验中测量了观察窗玻璃上两个点的应变时间历程。利用大型商用碰撞分析软件PAM-CRASH建立了全尺寸鸟撞后观察窗玻璃有限元计算模型,对鸟撞后观察窗试验过程进行了数值模拟,比较了应变及位移时间历程曲线的计算结果和试验结果,二者良好的一致性表明计算模型的合理性。在此基础上分析了内外层玻璃厚度及中间空气层厚度对后观察窗结构抗鸟撞动响应的影响规律,为飞机驾驶舱后观察窗玻璃的抗鸟撞设计提供技术指导。  相似文献   

2.
复合材料加筋壁板鸟撞动响应分析   总被引:1,自引:1,他引:0       下载免费PDF全文
考虑复合材料蜂窝夹芯结构的冲击损伤,采用接触碰撞耦合方法研究了复合材料加筋壁板的抗鸟撞性能。鸟撞方式包括垂直冲击和斜冲击两种,复合材料的冲击损伤模型采用Chang-Chang模型,分析了三种鸟撞速度下鸟撞性能参数如复合材料壁板的失效单元数、鸟体剩余动能和筋条的变形,以及复合材料壁板和筋条在某一鸟撞速度下应力随筋条数的变化规律。计算结果表明:垂直冲击和斜冲击下复合材料加筋壁板的抗鸟撞性能不同,并非筋条越多越有利于改善抗鸟撞性能,筋条有时还可能起反作用。  相似文献   

3.
鸟撞是飞行安全的重要威胁,军机强度规范、民机和发动机适航标准均明确要求,须通过鸟撞试验等手段对结构抗鸟撞能力进行验证,并对鸟撞关键部位、鸟撞速度和鸟弹规格等给出明确规定。家禽鸟弹因个体差异因素导致鸟撞响应出现较大分散性,人工鸟弹成为该领域的重要研究方向,相关标准指出可使用人工鸟替代家禽实施鸟撞试验。介绍了明胶人工鸟的制备工艺,基于国内外鸟撞试验结果梳理,分析了人工鸟弹与家禽鸟弹动态一致性和可替代性;阐释了人工鸟弹形状和尺寸等因素对撞击响应的影响,给出了人工鸟本构模型及本构参数识别方法的最新进展与不足;梳理了人工鸟在鸟撞试验研究方面的应用现状及人工鸟标准化方面的展望。  相似文献   

4.
采用动态数据采集系统,对45#钢平板在不同撞击速度下的鸟撞动响应全过程进行了详细研究,得到了撞击过程中平板上三个点位移和四个点的应变、撞击方向4个支反力等物理量随时间变化历程,同时利用高速摄像系统记录了鸟撞过程中鸟体及平板动态变形的全过程。对重复试验的结果进行比较,二者良好的一致性表明试验结果的可靠性,在此基础上分析了平板动响应及鸟体破碎随撞击速度的变化规律。发现,位移及撞击支反力峰值随撞击速度的提高而线性增大;撞击速度越高,鸟体的流体特性越明显,表明高速撞击数值模拟中鸟体应采用描述流体行为的本构模型。该试验结果对建立合理的鸟体本构模型及验证鸟撞有限元计算方法具有重要意义。  相似文献   

5.
2024-T3铝合金动力学实验及其平板鸟撞动态响应分析   总被引:1,自引:0,他引:1  
通过电子万能试验机和分离式霍普金森拉杆(SHTB)拉伸试验分别获得2024-T3铝合金材料准静态和高应变率两种应变率下的应力-应变曲线。铝合金材料的本构关系由能够反映材料硬化效应和应变率强化效应的Johnson-Cook材料模型描述,方程中的4个参数通过不同应变率下的应力-应变曲线拟合得到。基于瞬态动力学软件PAM-CRASH,结合材料动态力学性能试验所获得的2024-T3铝合金Johnson-Cook模型方程,耦合光滑粒子流体动力学(SPH)方法和有限元(FE)方法建立2024-T3铝合金平板的鸟撞数值模型,数值计算所得动态响应与鸟撞试验结果吻合较好,表明建立的鸟撞数值计算模型是合理、可靠的,整个分析流程从材料动态力学性能试验、鸟撞数值计算到最终的鸟撞试验验证为飞机结构的抗鸟撞设计与分析提供了有力的参考。  相似文献   

6.
针对多光谱硫化锌(zinc sulfide,ZnS)光学玻璃材料用于飞行器时的鸟撞问题进行了研究。对多光谱硫化锌玻璃进行了中高应变率下的压缩试验获得其材料属性。鸟体采用光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)方法建模,引入Gruneisen状态方程定义鸟体本构模型。对建立的鸟体模型进行撞击铝板的仿真并进行试验验证,验证结果表明建立的鸟体模型具有较高的精度,可以用于其它碰撞情景下的仿真。建立鸟撞玻璃平板的模型对多光谱硫化锌玻璃的耐鸟撞性能进行预测分析,仿真结果表明ZnS玻璃撞击部位和边缘约束的地方容易达到极限应变并发生失效;另外,随着鸟体撞击角度的减小玻璃表面的接触力峰值也逐渐减小。该研究所得结果可以为鸟体SPH方法的数值模拟以及多光谱硫化锌玻璃在飞行器上的应用提供参考。  相似文献   

7.
鸟撞飞机风挡的一体化数值模拟技术   总被引:1,自引:2,他引:1  
鸟体本构模型及其参数的确定是影响鸟撞飞机风挡数值模拟结果的重要因素,也是一直困扰大家的难题。为提高模拟结果的准确性,将鸟体模型识别和数值模拟相结合,提出鸟撞飞机风挡数值模拟的一体化技术。重点阐述鸟体本构模型及其参数的优化反演方法,并结合计算实例给出该技术的分析过程。这些工作进一步完善了鸟撞有限元数值模拟的耦合解法理论,对飞机结构的抗鸟撞研究具有一定的参考价值。  相似文献   

8.
针对平头弹高速撞击陶瓷复合厚靶的问题,以集中质量法为基础并考虑靶体的内摩擦效应对Fellows模型加以改进,建立侵彻过程的理论计算模型并利用Matlab编程求得不同撞击速度下弹体侵彻复合靶体的侵彻深度,模型得到了试验结果和数值计算结果的验证。参数分析的结果表明,陶瓷厚度的增加可提高复合靶体的抗侵彻能力,但随着初始撞击速度的提高,弹体的侵彻深度增长曲线趋于平缓。  相似文献   

9.
用电子液压拉伸试验机与分离式霍普金森拉杆(SHTB)装置进行2024-T3、7075-T6铝合金材料不同应变率的拉伸试验,拟合出反映两种材料应变率强化效应的Johnson-Cook本构方程。通过SHTB动态拉伸试验获得7种铆钉的极限拉伸、剪切载荷。基于瞬态动力学软件PAM-CRASH,利用元件级材料试验获得铝合金本构方程及连接件动态失效参数,耦合光滑粒子流体动力学(SPH)方法与有限元方法建立民机平尾前缘鸟撞数值模型进行试验并验证数值计算结果。计算、试验结果的一致性表明,所建鸟撞数值计算模型合理、可靠。整个积木式试验、分析流程可为民机结构抗鸟撞设计提供有力参考。  相似文献   

10.
杜龙 《振动与冲击》2012,31(7):137-141
复合材料大面积用于飞机结构后,其鸟撞问题变得更加突出。利用大型通用有限元程序ABAQUS,采用耦合欧拉—拉格朗日方法(CEL)对某型无人机复合材料机翼前缘的鸟撞问题进行模拟,研究了鸟体速度、密度和蒙皮铺层形式等对鸟撞动响应的影响,计算了机翼前缘填充泡沫后的鸟撞损伤,对复合材料蒙皮的鸟撞破坏机理进行了分析,所得结果对工程设计具有参考意义。  相似文献   

11.
为了解高强铝合金对动能杆的抗侵彻性能,在一级轻气炮上开展了直径5.98 mm的平头刚性弹侵彻6mm厚7A04-T6铝合金靶板的打靶试验,撞击速度范围为73.9~446.5 m/s。获得了弹体贯穿靶板后的剩余速度以及靶板的断裂行为,通过拟合初始-剩余速度数据得到了弹道极限。同时,在ABAQUS/Explicit中建立了三维有限元模型对打靶试验进行了数值计算,7A04-T6的力学行为通过Johnson-Cook本构模型和修正的Johnson-Cook断裂准则描述。试验结果表明,7A04-T6高强铝合金靶板在平头弹撞击下发生剪切冲塞,塞块表面有明显裂纹产生,弹道极限为156.0 m/s,剪切冲塞可在撞击速度不低于约0.90倍弹道极限时形成。数值仿真发现,有限元计算可成功再现靶板的剪切冲塞及冲塞表面的断裂;预报的弹道极限为168.8 m/s,比试验结果高约9%;撞击速度不低于0.92倍弹道极限时靶板发生剪切冲塞破坏,与试验结果十分接近。  相似文献   

12.
为研究不同质量和不同速度下明胶鸟弹的数值建模方法,开展明胶鸟弹撞击力传感器试验。试验过程中明胶鸟弹呈现类似流体状破碎和前端破裂后残余部分回弹的两种失效模式;在数值建模中,对破碎呈流体状的明胶鸟弹选用SPH方法离散及状态方程本构模型,对前端破裂后残余部分回弹的明胶鸟弹选用拉格朗日方法离散及含失效的弹塑性本构模型,并依据试验结果分别对其本构参数进行反演,计算结果与试验结果吻合度较高,验证了该建模方法的合理性;对本构参数适用性进行验证,结果表明,在该设计的明胶鸟弹质量和撞击速度范围内,对于含失效的弹塑性本构模型,不同质量的明胶鸟弹需要不同的本构参数进行建模;对于状态方程本构模型,不同质量与不同速度的明胶鸟弹,需要不同的本构参数进行建模。  相似文献   

13.
基于旋翼综合气弹分析程序,求解出直升机旋翼桨叶在飞行过程中的稳态响应。以此作为鸟体撞击桨叶的初始状态,采用非线性流-固耦合算法,建立了直升机旋翼桨叶鸟撞动力学方程,利用直接数值积分方法求解桨叶的动态响应。并讨论了鸟体速度、质量、撞击位置、桨叶根部约束和离心力等参数对桨叶动态响应的影响,从而为直升机桨叶抗鸟撞设计提供一些理论依据。  相似文献   

14.
采用数值模拟方法对飞机撞击特大型LNG储罐的全过程进行仿真分析。分析中采用LS-DYNA有限元程序,考虑罐体、储液与保温层间的相互问题,建立了F-15战斗机的SPH模型,对飞机材料的选择和参数确定进行了详细分析,并以Riera法为依据,对F-15战斗机SPH模型撞击刚体所产生的荷载进行了对比验证,对比结果证明了SPH模型的可靠性和实用性。分析结果表明:撞击角度越大,外罐所承受的撞击能量越大,相应的内罐破坏越小,因此垂直撞击为最不利撞击角度;撞击高度对整体工况计算结果影响不大,储罐在经受215m/s撞击速度撞击下均出现了严重破坏;112m/s撞击速度时内罐尚有安全余量,160m/s撞击速度时内罐撞击中心区域内材料已达到极限应变,因此可认为目前设计方法设计的储罐所能承受的最大撞击速度为160m/s。  相似文献   

15.
对研制的复合材料高速列车风阻制动风翼建立有限元模型。据接触-碰撞基本理论利用非线性动力分析软件LS-DYNA对鸟撞制动风翼过程数值仿真,将计算结果与实验数据对比验证仿真过程的合理性。结果显示,该制动风翼能承受500 km/h鸟体撞击,极限能达625 km/h,满足要求设计。鸟撞过程中制动风翼变形具有冲击波传递特征,应力峰值主要出现在被撞击区域,与底座相连部分及摇臂附近也会出现应力集中。  相似文献   

16.
民用飞机对尾翼前缘的抗鸟撞性能有很高要求。某型民机尾翼前缘原始辅助梁为铝合金机加件,为了优化其抗鸟撞性能,提出了两种使用铝合金钣金辅助梁的尾翼前缘新构型。通过PAM-CRASH软件对三种前缘的抗鸟撞性能进行了数值计算,并根据计算结果在两种新构型中选择了抗鸟撞性能更好的作为优选构型。针对前缘原始构型和和优选构型开展鸟撞试验和试后计算分析。数值计算和试验结果都表明,该研究提出的带"波纹加强筋"的钣金辅助梁结构没有硬点,且材料延展性较好,可以通过结构发生大变形、紧固件大量失效吸收鸟撞过程中的能量,从而大幅提高尾翼前缘的抗鸟撞性能,而且该结构还具有明显的质量优势,可以应用于民机尾翼前缘抗鸟撞设计。  相似文献   

17.
用LS-DYNA3D软件,建立了由钢化玻璃和PU、PVB塑料薄膜组成的风挡夹层结构鸟撞数值模型。鸟体采用ALE格式和与应变率相关的随动硬化材料模型,夹层结构用Lagrange格式和双线性材料模型,对11种风挡夹层结构进行了数值计算,分析了撞击过程的损伤和应力,讨论了夹层结构耐撞性的评估方法,为风挡夹层结构设计提供理论依据。  相似文献   

18.
尹曜  朱翔  王蕊 《工程力学》2022,39(9):95-109
针对易遭受撞击的站房结构柱等提出有效的防撞装置对结构安全运行至关重要,该文以此提出了一种新型耗能减撞站房柱,保障结构正常使用的同时达到最优耗能能力。采用LS-DYNA对新型耗能防撞设计的高铁站房结构柱进行防撞性能分析,并对其主要的耗能元件防撞击X型阻尼器和泡沫铝进行了研究。基于已有的经典试验进行数值模拟验证,包括钢板单向准静态加载试验、钢骨混凝土撞击试验和泡沫铝填充薄壁结构撞击试验。分析表明该文所建立的数值模型能够较好的模拟试验的撞击力和变形发展。以此建立防撞击X型阻尼器和新型耗能减撞站房柱的数值模型,从而优化单个防撞击X型阻尼器截面,使其耗能最好,并对比了不同因素下新型耗能减撞站房柱的吸能特性及加入泡沫铝后对新型耗能减撞站房柱的吸能影响。结果表明:在撞击荷载作用下,采用耗能最优防撞击X型阻尼器的新型耗能减撞站房柱中阻尼器将吸收97%的撞击能量,而内部结构柱中只有局部混凝土产生了裂缝;加泡沫铝的新型耗能减撞站房柱的吸能分布更加合理且吸能有较大的提升,但结构柱的塑性应变也会随之增加;整体而言,新型耗能减撞站房柱具有优良的吸能能力,保障了结构柱的安全。  相似文献   

19.
使用Abaqus/Explicit有限元分析软件,开展平头弹撞击不同厚度双层TC4钛合金板数值模拟,研究双层TC4钛合金板撞击失效特性与失效模式随厚度变化规律及机理。通过对比撞击试验与仿真结果,验证数值模型和参数的有效性。在此基础上与等厚度单层TC4钛合金板的抗侵彻性能进行对比,结果表明,对于12.68 mm直径的平头弹,在靶板厚度2~16 mm内,双层结构的弹道极限与总厚度近似呈线性关系。由于单层靶板在4~10 mm内随着厚度增加,弹道极限无明显变化,所以等厚接触式双层结构在该厚度范围相比单层靶有明显的优势。在总厚度为8 mm时,双层靶优势最为明显,弹道极限相比单层靶提高了43%左右。  相似文献   

20.
为了揭示TC4钛合金板抗撞击性能与失效模式随厚度的变化规律及机理,采用ABAQUS/Explicit有限元软件建立平头弹撞击不同厚度靶板的模型,对弹体撞击不同厚度靶板进行计算。通过对比数值仿真与撞击实验结果,验证仿真模型的有效性。研究结果表明,靶板的主要失效模式、耗能机制、弹道极限随其厚度增加会发生改变,靶板厚度存在对应的转折值。对于TC4钛合金薄板,当靶板厚度比较小时,靶板拉伸撕裂破坏占主导作用。但是,当靶板厚度比较大时,靶板主要失效模式是局部剪切破坏。当靶板厚度小于4 mm、大于8 mm时,弹道极限速度随靶板厚度的增加而增加;当厚度为4~8 mm时,弹道极速度变化不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号