首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport characteristics of dynamically and statically cross-linked Ethylene Propylene Diene Monomer/poly (ethylene-co-vinyl acetate) (EPDM/EVA) blends have been examined in the temperature interval of 28–58 °C using benzene, toluene and xylene as probe molecules. The dynamically vulcanized blends exhibited enhanced properties on the sorption and diffusion features compared to the corresponding statically vulcanized blends. In both the cases, as the EVA content increased in the blends, the solvent uptake decreased. The experimental observations have been correlated with the phase morphology of the blends, using scanning electron micrographs. The crystallinity of the blends was studied using X-ray diffraction patterns. Among the three vulcanising systems, viz, sulphur, dicumyl peroxide (DCP), and a mixture consisting of sulphur and peroxide, employed for the matrix, the DCP cross linked system exhibited the lowest solvent uptake. The molar mass between cross links and the diffusion coefficients have been computed to complement the observed sorption behaviour.  相似文献   

2.
The transport behavior of natural rubber/ethylene vinyl acetate (NR/EVA) blends has been investigated using aromatic hydrocarbons as probe molecules, in the temperature range of 26–56°C. It has been observed that the solvent uptake decreases with increase in the EVA content of the blends. The blends were crosslinked by three systems, viz. sulfur, dicumyl peroxide (DCP), and a mixture consisting of sulfur and peroxide. The DCP crosslinked system exhibited the lowest solvent uptake. The differences in the transport behavior of the blends, crosslinked by different modes, has been described in terms of the nature of crosslinks introduced between the macromolecular chains during vulcanization. The mechanism of transport has been found to deviate from the regular Fickian behavior, observed with conventional rubbers, with an increase in EVA in the blends. The dependence of the transport coefficients on blend composition, crosslinking systems, nature of penetrants, and temperature was studied. The blend–solvent interaction parameter, enthalpy, and entropy of sorption have also been estimated from the transport data. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2691–2702, 2003  相似文献   

3.
Polymer blends based on styrene butadiene rubber and ethylene vinyl acetate (EVA) were prepared. The sorption and diffusion of four aliphatic hydrocarbons through the blends were investigated with temperatures of 26–56°C. Sulfur, dicumyl peroxide (DCP), and a mixed system consisting of sulfur and DCP (mixed) were used as crosslinking agents for the blends. Of the three systems, the peroxide vulcanized blends were found to exhibit the lowest penetrant uptake. The aliphatic liquid penetration through the matrix decreased with an increase in the EVA content in the blends, which was attributed to the semicrystalline nature of the EVA matrix. The experimental observations were correlated with the morphology of the blends. Diffusion and permeation coefficients were calculated from the sorption data. A slight deviation from the Fickian trend was observed for the mechanism of transport with an increase in the EVA content in the blends. The molecular mass between crosslinks and thermodynamic parameters of sorption were determined from swelling data. The experimental observations were compared with different theoretical models. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2884–2897, 2006  相似文献   

4.
Silicone rubber/ethylene vinyl acetate (SR/EVA) rubber mixes with different ratios were prepared by using dicumyl peroxide (DCP) and benzoyl peroxide (BP) as curing agents. The vulcanization characteristics such as cure kinetics, activation energy, and cure rate of the blends were analyzed. The effects of blend ratio and curing agents on the mechanical properties such as stress–strain behavior, tensile strength, elongation at break, tear strength, relative volume loss, hardness, flex crack resistance, and density of the cured blends have been investigated. Almost all the mechanical properties have been found to be increased with increase in EVA content in the blends particularly in DCP‐cured systems. The increment in mechanical properties of the blends with higher EVA content has been explained in terms of the morphology of the blends, attested by scanning electron micrographs. Attempts have been made to compare the experimental results, from the evaluation of mechanical properties, with relevant theoretical models. The aging characteristics of the cured blends were also investigated and found that both the DCP‐ and BP‐cured blends have excellent water and thermal resistance. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1069–1082, 2006  相似文献   

5.
The interaction of a black filler and a white filler, which are extensively used in the rubber industry, with natural rubber/poly (ethylene‐co‐vinyl acetate) (NR/EVA) blends vulcanized by DCP has been examined by equilibrium swelling technique. Blends loaded with intermediate super abrasion furnace black (ISAF) and those with silica (SiO2), of same loading, have been used. The silica incorporated blends sorbed a higher amount of aromatic solvents, compared with the ISAF filled blends, when NR was the continuous phase. However, the silica filled systems showed lower sorption characteristics when EVA became the continuous phase. This has been explained in terms of the differences in the interaction between the filler particles and the blend components. The swelling coefficient, diffusion coefficient, and molar mass between crosslinks have been computed to complement the experimental observations. POLYM. COMPOS., 28:705–712, 2007. © 2007 Society of Plastics Engineers  相似文献   

6.
The melt Theological behavior of nitrile rubber (NBR)/ethylene-vinyl acetate (EVA) copolymer blends was studied with special reference to the effect of the blend ratio, cross-linking systems, and shear rate using a capillary rheometer. At a given shear stress at 90°C, the viscosities of the blends vary slightly with composition. The effect of cross-linking systems [viz., sulfur (S), peroxide (DCP) and mixed (S+DCP) systems] on the viscosity of NBR/EVA blends is negligible. The melt viscosity of the blends decreases with increasing shear rate, showing pseudoplastic behavior. The flow behavior index values also support the pseudoplastic nature of these blends. Various theoretical models were used to predict the melt viscosity of the blends. Parameters such as die swell, principal normal stress difference, recoverable shear strain, and shear modulus were calculated to characterize the melt elasticity of these blends. The melt elasticity of the system was increased by the addition of NBR to EVA. The extrudate deformation at different shear rates was also studied. It was observed that as the shear rate increases, the extrudate surface exhibits a higher degree of deformation. The morphology of the extrudates of the blends at different shear rates has been examined by a scanning electron microscope. The morphology was found to be dependent on the blend ratio and shear rate.  相似文献   

7.
The dynamic mechanical behaviour of uncrosslinked and crosslinked styrene butadiene rubber/poly (ethylene-co-vinyl acetate) (SBR/EVA) blends was studied with reference to the effects of blend ratio, crosslinking systems, a compatibilizer viz. maleic-anhydride grafted poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS-g-MA), frequency and temperature. The two separate tan δ peaks, obtained during DMA, indicated the immiscibility of SBR/EVA system. The damping properties increased with SBR content for uncrosslinked and crosslinked blends. In the case of crosslinked systems, depending upon the type of crosslinking agent used, the glass transition temperature (T g) of SBR phase has been found to be shifted to higher temperatures. The damping characteristics of the blends were observed to be affected by the variations in frequency. The addition of the compatibilizer improved the storage modulus and reduced the damping properties. These results have been correlated with the morphology of the blends, attested by scanning electron micrographs. The activation energy for glass transition has been computed. The experimental data on storage modulus were compared with theoretical predictions.  相似文献   

8.
Natural rubber (NR)-poly(ethylene-co-vinyl acetate) (EVA) blends have been studied by incorporation of mercapto-modified EVA (EVASH) combined with dicumyl peroxide (DCP) as a curing agent. The mechanical, thermal, and morphological properties of NR-EVA blends as functions of blend composition and compatibilizer and/or curative additions were investigated. An EVASH-DCP combined system leads to the greatest improvement in tensile strength when EVA is dispersed within the NR matrix. Higher performance on Shore A hardness was also achieved with this combined system. For blends characterized by NR domains dispersed in the EVA matrix, the efficiency of pure DCP in improving the tensile strength is higher. Morphological observations and selective extraction experiments indicate the cross-linking of NR phase in both systems. A cross-linking of the EVA phase is also suggested by DCP or an EVASH-DCP combined system, based on the decreasing degree of crystallinity of this phase. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Foamed materials (EVA/ESI) have been prepared from blends of ethylene‐vinyl acetate copolymer (EVA) and ethylene‐styrene interpolymers (ESI) in the presence of various amounts of dicumyl peroxide (DCP). Four ESIs of different compositions were employed in this study; their styrene contents ranged from 30 to 73 wt% and their Tg ranged from −2 to 33°C. It has been found that microcellular morphology, degree of crosslinking and expansion ratio were strongly affected by the DCP concentration and the type of ESI employed. A minimum degree of crosslinking was required for making good foams and the same degree of crosslinking could be achieved by employing a smaller amount of DCP for an EVA/ESI blend having a higher styrene content. In contrast to other EVA blends, such as EVA/LDPE, these EVA/ESI blends exhibited no existence of any optimum DCP concentration, and the α glass transition temperatures of the foams varied with the ESI type, covering a wide span from 0°C to 37°C. Therefore, it was possible to tailor the Tg of an EVA/ESI blend by choosing an appropriate type of ESI. Furthermore, by correctly tailoring the Tg, the EVA/ESI foam could be made into a rubbery material with a custom‐designed damping factor. Tensile strength and modulus of the EVA/ESI foams increased generally with an increase in the styrene content, with the exception that ESIs with very low styrene content will confer on the blend a high modulus at small strain and a large elongation at break.  相似文献   

10.
Ethylene vinyl acetate (EVA)/epoxidized natural rubber (ENR) blends containing 10 and 30 wt % ENR were prepared by using an internal mixer. Five different types of curing systems were employed: dicumyl peroxide (DCP), sulfur (S), phenolic resin (Ph), DCP + S, and DCP + Ph. DCP could crosslink with both EVA and ENR while S and Ph were curing agents for ENR. The DCP system provided the lowest tensile properties and tear strength because of low crosslinking in ENR phase. Addition of sulfur or phenolic resin increased the mechanical properties due to a better vulcanization of the rubber phase. The mechanical properties of the blends decreased with increasing ENR content. The rubber particle size in the blends containing 30% ENR played a more important role in the mechanical properties than the blends containing 10% ENR. ENR particle size did not affect heat shrinkability of EVA and a well vulcanized rubber phase was not required for high heat shrinkage. Furthermore, heat shrinkage of the blends slightly changed as the ENR content increased for all curing systems. With regard to the mechanical properties and heat shrinkability, the most appropriate curing system was DCP + Ph and in the case the 10 wt % ENR content produced a more favorable blend. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
As the first step for the preparation of interpenetrating polymer networks from nitrile rubber and polyacrylonitrile, the sorption and diffusion of acrylonitrile monomer through nitrile rubber crosslinked by three different vulcanization systems—conventional (CV), dicumyl peroxide (DCP), and a mixture consisting of sulfur and peroxide (mixed)—were studied in the temperature interval of 30–70°C. Kinetic curves have been generated for these systems to compute diffusion and sorption coefficients. The equilibrium sorption is found to be maximum for the CV system. The molar mass between crosslinks (Mc) has estimated and compared with affine and phantom models. It was found that the Mc values follow the affine model. The diffusion coefficient values are highest for DCP and lowest for CV. It was observed that the kinetics of liquid sorption followed an anomalous behavior. The temperature dependence of the transport parameters was followed by an Arrhenius relationship, from which the activation energy for diffusion, permeation, and sorption were calculated. It is found that temperature activates diffusion in all cases. The polymer–solvent interaction parameter was determined. The amount of polysulfidic linkages in the rubber network was also estimated. The experimental results were compared with theoretical predictions. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 941–952, 2000  相似文献   

12.
Aliphatic solvent resistance of polychloroprene rubber (CR) reinforced reduced graphene oxide (RGO) nanocomposites were explored in the temperature range of 30–50 °C using hexane, heptane, and octane. Microstructure-assisted solvent resistant property is evident from transmission electron microscopy images of fabricated composites. Different transport parameters such as diffusion, permeation, and sorption constants were moderate while increasing RGO content. Diffusion mechanism was explained based on the permeating molecule and is found to be close to Fickian mechanism except for heptane. Evaluation of kinetic and thermodynamic parameters shows the ability of nanoreinforcement to alter thermodynamic characteristics and rate constant values. The extent of reinforcement was also evaluated by Kraus equation. From swelling studies, molecular mass between crosslinks was evaluated using Flory–Rehner equation and compared these values with theoretical predictions such as phantom and affine models to analyze the deformation and mobility of the network during swelling. Temperature plays a significant role in the transport of organic solvent through CR/RGO nanocomposites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48168.  相似文献   

13.
Poly (ethylene-co-vinyl acetate) (EVA) has been used as a compatibilizer for heterogeneous natural rubber/acrylonitrile butadiene rubber (NR/NBR) blends. NR/NBR (50/50) blends were compatibilized with varying amounts, from 0 to 10 parts per hundred rubber (phr), of EVA. The compatibility of the blend components in presence of EVA has been evaluated in terms of mechanical and sorption characteristics. The mechanical properties were found to be improved by the addition of EVA upto 6 phr. The solvent resistance of the compatibilized samples has been observed to be higher compared to the uncompatibilized blends; attributed to the increased interfacial adhesion between the blend components. DSC studies showed a shift of glass transition temperatures of the blend components towards higher temperatures indicating increased rigidity of the matrix in presence of EVA.  相似文献   

14.
The behaviour of styrene butadiene rubber/acrylonitrile butadiene rubber (SBR/NBR) blends in the environment of chlorinated hydrocarbons, such as carbon tetrachloride, chloroform and dichloromethane, in the temperature range 32–52°C has been investigated. Sulphur, dicumyl peroxide and a mixed system consisting of sulphur and peroxide were used as the vulcanising systems for the matrix. The effects of vulcanising agents, blend composition, solvents and temperature on the sorption characteristics were studied. The sulphur-vulcanised systems exhibited the highest solvent uptake and those with dicumyl peroxide as the vulcanising agent the lowest. This difference has been explained on the basis of the nature of cross links established between the polymer chains during vulcanisation. The solvent uptake increased with an increase in SBR content in the blends when carbon tetrachloride was used as the penetrant, whilst it decreased with SBR content when chloroform and dichloromethane were used as the probes. This behaviour has been explained on the basis of the polarity difference of the solvents. For a given blend system, the solvent uptake was maximum when dichloromethane was used as the solvent and minimum when carbon tetrachloride was used. This has been accounted for in terms of the difference in the size of the penetrants. The intrinsic diffusion coefficient, permeation coefficient, cross link density and interaction parameter were estimated from the sorption data. Thermodynamic parameters such as enthalpy and free energy changes were also calculated. These values indicate that the sorption process in the present systems is exothermic and is more spontaneous in sulphur-vulcanised systems. The experimental results, when compared with different theoretical diffusion models, have been found to be closer to Robeson’s and Maxwell’s models.  相似文献   

15.
The transport behavior of O2 and N2 were studied for series of physical blends of PVC with EVA having different vinyl acetate (VAc) contents in the EVA (45 and 65 wt-%) and using different milling temperatures (160° and 185°C). The polymer blends were further characterized by dynamic mechanical measurements, density measurements, and x-ray diffraction. At higher VAc content in EVA and with higher milling temperature, the rate of permeation (P) and the rate of diffusion (D) decrease, and the activation energy of D (from Arrhenius plots) increases. Furthermore, the experimental density values of PVC/EVA-45 blends agree well with calculated values, assuming volume additivity of the two components, while those of PVC/EVA-65 blends are higher than the calculated densities. These results are interpreted as due to denser packing of polymer molecules and increased PVC-EVA interaction at higher VAc content and with higher milling temperature, indicating better compatibility between the blend components. The x-ray diffraction data give no evidence of crystallinity. Sharp increases in P and D values at about 7.5% EVA (by weight) are found for PVC/EVA-45 blends (in agreement with our previous work) but not for PVC/EVA-65 blends. This is interpreted as due to a phase inversion at increasing EVA content in the former blends but not in the latter blends. The dynamic mechanical measurements show that the PVC/EVA-65 blends milled at 160°C behave largely as semicompatible systems with maximum interaction between the two polymers at compositions of about 50/50 by weight.  相似文献   

16.
Ethylene vinyl acetate (EVA, 18 mol % vinyl acetate) and epoxidized natural rubber (ENR, 50 mol % epoxidation) were blended in an internal mixer and compared to EVA. Dicumyl peroxide (DCP) was used as a curing agent. The blends consisted of 10–50 wt % of ENR and were compared with crosslinked EVA in terms of heat shrinkage, mechanical properties, and degree of crystallinity. It is found that the blends showed a decrease in mechanical properties with increasing ENR content because DCP was not a good vulcanizing agent of ENR. The addition of ENR did not affect heat shrinkability of EVA. The maximum heat shrinkage obtained was 80% for EVA and the blends. ENR did not affect thermal properties of EVA investigated by the differential scanning calorimetry. The X‐ray diffractometry showed discrepancy in degree of crystallinity before and after specimen stretching and after heat shrinking. It is believed that ENR particles decreased molecular orientation of EVA resulting in a decrease in degree of crystallinity but the remained orientation was sufficient for heat shrinking. The blend showed better extrudability than EVA after increasing take‐up speed. Therefore, the extruded tube prepared from the blend provided higher heat shrinkage than EVA tube. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The transport behavior of He, O2, N2, and CO2 in a series of PVC/NBR polymer blends with varying acrylonitrile (AN) content in the NBR component has been studied at 25° and 50°C. In addition, measurements of density, crystallinity, and thermal expansion coefficients were carried out. The transport behavior of these blends is similar to previous result for PVC/EVA.1. With increasing AN content in NBR, the permeability (P) and diffusivity (D) of the permeants decreased while the activation energy for diffusion (ED) increased. For the polymer blends, better additivity of permeability and diffusivity was observed with increasing AN content in the NBR component. The polymer blends also showed increasing volume contraction with increasing AN content in the NBR component. These effects have been discussed as due mainly to increased polymer–polymer interaction causing reduced segmental mobility and increased compatibility of the two polymers. The sorption values calculated from P/D ratios were largely irregular and fluctuated with the blend composition. They were less reproducible than other transport parameters, i.e., P and D measured separately. Several reasons for the irregular sorption behavior were proposed.  相似文献   

18.
Processability enhancement feasibility of an in-house synthesized poly(lactic acid-co-ethylene terephthalate), PLET, is investigated by blending with commercial poly(ethylene-co-vinyl acetate), EVA, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, and poly(butylene succinate), PBS. The three blend systems are prepared by varying PLET contents, and their properties are characterized. DSC, SEM, and FTIR results indicate that PLET/EVA blends are immiscible, while the corresponding PLET/PBS and PLET/PHBV blends are miscible and partially miscible, respectively. DMA results show that the three blend systems have storage modulus comparable to those of commercial EVA, PHBV, and PBS, when PLET content is kept lower than 50, 25, and 25 wt%, respectively. PLET/EVA blends show higher thermal stability, compared to those of the other two blend systems. Results on degradability tests indicate that PLET/PBS blends show highest hydrolytic degradability, compared to the other two blends, as both blend constituents are associated in the hydrolytic degradation.  相似文献   

19.
Transport characteristics of chlorinated hydrocarbon through Nylon/NBR (Acrylonitrile Butadiene Rubber) blend has been investigated with special reference to the effect of blend ratio, compatibilizer and effect of dynamic crosslinking. An attempt has been made to correlate the diffusion characteristics with morphology of the blend. Fine and uniform distribution of the dispersed domains with a stable morphology were obtained by dynamic vulcanization. Depending on the composition, blends show dispersed/matrix and co‐continuous phase morphologies. The various transport parameters such as diffusion coefficient (D), permeation coefficient (P) and sorption coefficients (S) were evaluated at different diffusion conditions such as temperature and percentage of compatibilizer. The equilibrium solvent uptake decreases with an increase in the concentration of NBR in the blends. Finally thermodynamic parameters were evaluated from the diffusion data. POLYM. ENG. SCI., 57:231–236, 2017. © 2016 Society of Plastics Engineers  相似文献   

20.
In this article, maleated–grafted ethylene‐co‐vinyl acetate (EVA‐g‐MA) was used as the interfacial modifier for polypropylene/polyamide‐6 (PP/PA6) blends, and effects of its concentration on the mechanical properties and the morphology of blends were investigated. It was found that the addition of EVA‐g‐MA improved the compatibility between PP and PA6 and resulted in a finer dispersion of dispersed PA6 phase. In comparison with uncompatibilized PP/PA6 blend, a significant reduction in the size of dispersed PA6 domain was observed. Toluene‐etched micrographs confirmed the formation of interfacial copolymers. Mechanical measurement revealed that the addition of EVA‐g‐MA markedly improved the impact toughness of PP/PA6 blend. Fractograph micrographs revealed that matrix shear yielding began to occur when EVA‐g‐MA concentration was increased upto 18 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99:3300–3307, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号