首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
利用改进的大直径SHPB试验装置,对花岗岩试件进行单轴循环冲击压缩试验,分析花岗岩在循环冲击载荷下的力学特性及能量吸收规律。通过基于Weibull分布的动态统计损伤模型计算岩石的累积损伤,结合试验曲线分析岩石累积损伤的演化规律。研究结果表明:随着冲击载荷循环作用次数的增加,变形模量变小,试件的屈服应变增大,峰值应力呈降低趋势。岩石的累积比能量吸收值随着冲击次数的增加而增大,且试件破坏前其值增加缓慢,试件破坏时其值急剧增大。基于Weibull分布的动态损伤本构模型的计算曲线与试验曲线具有较好的一致性,该模型能反映岩石的强度与应变、应变率的关系。累积损伤随着循环冲击次数的增加而增大,其增加速率由小变大,试件破坏前累积损伤的增加较为平缓,其主要增量由最后一次冲击破坏产生。  相似文献   

2.
岩石动态力学性能试验研究   总被引:1,自引:0,他引:1  
为了解花岗岩的动态力学性能,采用φ 50 mm Hopkinson压杆对岩石进行动态冲击压缩试验,应变率范围为25.4~193.4 s-1,采用波形整形技术获得平滑的脉冲荷载,得出岩石的动态应力-应变曲线.试验结果表明:岩石抗压强度具有明显的应变率效应,破坏强度随着应变率的增加而增大,相对于静态强度120 MPa,最高动态强度增大至365 MPa,约为静态强度的3倍;冲击荷载较低时,试样内部出现损伤及微小裂纹,荷载强度增大时,试样出现宏观裂纹及破碎成块,当荷载进一步增大时,试样呈粉碎性破坏. 研究结果可为国防工程结构设计提供参考.  相似文献   

3.
 博士学位论文摘要 岩石材料动态力学特性是评价岩石结构在爆炸以及地震载荷作用下稳定性的重要参数, 是国防和民用防护工程研究的基本资料, 具有重要的学术价值和应用价值。对花岗岩材料在动态压应力(单轴和三轴) 作用下的力学特性进行了较系统的实验和理论研究。首先通过实验研究了花岗岩材料的动态断裂特性以及在单轴和三轴动态压应力作用下的强度以及变形特性。结果表明, 花岗岩的动态断裂韧度随加载速率的增加以及加载时间的减小而增加。在单轴情况下, 花岗岩的抗压强度随应变速率的增加而增加, 杨氏模量以及泊松比随应变速率的变化很小。在三轴情况下, 花岗岩的抗压强度也随应变速率的增加而增加, 强度的增加幅度随围压的增加有减小的趋势, 杨氏模量以及泊松比随应变速率的变化不大; 花岗岩的杭压强度随围压的增加明显增加, 在不同的应变速率下具有相同的趋势, 花岗岩的杨氏模量以及泊松比随围压的增加有小幅度的增加趋势。在实验研究的基础上, 应用滑移型裂纹模型对花岗岩材料在压缩应力作用下的力学特性进行了理论研究。在单轴情况下, 采用一组与轴向应力平行的滑移型裂纹系列模拟岩石材料的劈裂破坏模式同时考虑裂纹间的相互作用。根据裂纹的动态扩展准则以及能量平衡理论, 得到了不同应变速率下花岗岩的理论强度值以及应力应变关系, 这些理论结果与实验结果符合得非常好。本部分的研究还表明, 在动载荷作用下, 裂纹的扩展速率以及岩石材料的动态断裂韧度的率相关特性导致岩石材料的单轴抗压强度随应变速率的增加而增加。当应变速率为10- 4~ 100S- 1范围时, 裂纹的扩展速率对岩石材料的破坏影响可以忽略, 岩石材料的抗压强度随应变速率的增加仅仅由于岩石材料的动态断裂韧度的率相关特性造成。在三轴情况下, 用一组与轴向应力成一定夹角的滑移裂纹系列模拟岩石材料的剪切破坏模式, 并根据虚拟力方法得到了该裂纹系列的应力强度因子表达式。根据动态裂纹扩展准则以及能量平衡理论, 也得到了不同围压以及不同应变速率下花岗岩的理论强度值以及应力应变关系。结果表明, 花岗岩的抗压强度以及应力应变关系随应变速率的变化规律与实验结果符合得比较好。模型结果还表明, 由模型得到的强度以及应力应变曲线随围压的变化规律在较低围压时(小于110M Pa) 与实验结果符合得比较好。本项研究在实验研究的基础上, 创新性地从研究岩石内部固有的微裂纹在动载荷作用下的扩展聚合特性入手, 结合细观力学以及动态断裂力学的相关理论, 揭示了花岗岩的率相关特性机理, 初步建立了岩石材料宏观动态力学特性与岩石内部固有的裂纹动态扩展特性的关系以及岩石材料强度与应变速率的关系和率相关的岩石材料本构模型, 构筑了系统研究岩石材料率相关特性的基本框架。  相似文献   

4.
高应变率下预制单节理岩石SHPB劈裂试验能量耗散分析   总被引:1,自引:0,他引:1  
李淼  乔兰  李庆文 《岩土工程学报》2017,39(7):1336-1343
应用SHPB试验装置研究预制单节理岩石的能量耗散关系。使用SHPB试验系统,对高径比为0.5的完整花岗岩试样及预制单节理花岗岩试样进行高应变率下的冲击劈裂试验。在相同驱动气压下,改变加载方向与节理间的夹角,完成高应变率相同入射能下的冲击劈裂试验。对SHPB系统中的入射能、反射能、透射能及试样吸收能的时程变化规律进行了分析;从能量角度出发,分析冲击荷载作用下单节理岩石的能量耗散规律及其各向异性特征。结果表明:高应变率下,完整花岗岩试样在冲击劈裂试验中的吸收能随平均应变率增加而增加,表现出显著的应变率相关性;预制单节理岩石与加载方向之间夹角对破坏模式的影响明显,节理试样产生3种破坏模式:(1)穿越节理面的劈裂破坏;(2)沿节理岩石层面的滑移破坏;(3)劈裂与滑移破坏共同作用下的破坏。在入射能基本相同,入射时间较长时节理岩石试样吸收能较入射时间较短时的吸收能大。动态劈裂试验中,节理试样的吸收能随节理角度变化(0°~90°)近似呈U型。研究成果可为节理岩石动态力学性能研究提供参考。  相似文献   

5.
岩石动态强度及其应变率灵敏性的尺寸效应研究   总被引:5,自引:2,他引:3  
采用波长与岩石试件长度成比例的半正弦应力波加载方式,对长径比为0.5、直径分别为22,36,75 mm的花岗岩、砂岩和石灰岩试件进行不同应变率条件下的SHPB试验.试验结果表明:岩石动态强度随着应变率的增高近似以乘幂关系增大,呈现较强的率依赖性;试件尺寸越大,岩石动态强度对应变率依赖的灵敏性越显著,所测得的岩石动态强度离散性越小;在相同的应变率加载条件下,岩石动态强度随试件尺寸的增大而增加,与静载条件下岩石强度的尺寸效应相反;岩石动态强度的尺寸效应随着应变率的降低而减弱,并由此推断存在一个临界应变率对应着岩石尺寸效应的消失.低于临界应变率时,静载的尺寸效应占主导地位;高于临界应变率时,动态的尺寸效应占主导地位.  相似文献   

6.
 岩石等脆性材料的力学性能与其所受围压的大小密切相关。为了研究地下工程岩石在围压下的冲击压缩特性,采用具主动围压加载的分离式Hopkinson压杆,对岩石进行主动围压下的SHPB冲击压缩试验,得到岩石在不同围压和不同应变率下的轴向应力–应变曲线,并对试验过程中试件的应力均匀性进行分析。研究表明:岩石类脆性材料在围压作用下其抗压强度和韧性大大提高,并且具有向延性特征发展的趋势,显现出较强的围压效应;在同等级围压下,岩石的峰值强度和峰值应变随应变率的变化表现出显著的应变率相关性,动态强度增长因子与应变率的对数呈近似线性关系,动态强度随应变率的增加而近似线性增长。单轴动荷载下,岩石在以拉应力为主,其他应力联合作用下发生破坏,表现出明显的脆性特征;随着围压的增加,岩石试件将发生脆性向延性的转变,破坏形态以压剪破坏为主,同时发生拉应变破坏和卸载破坏。  相似文献   

7.
轴向拉伸情况下岩石的动态力学特性试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过在自行研制的加载系统上对花岗岩在应变速率10-5s-1~10-1s-1范围内进行了动态直接单轴拉伸试验,并辅以巴西劈裂实验,系统、全面地研究了花岗岩在不同应变速率影响下的强度及变形特性。结果表明:岩石的抗拉强度随着应变速率的增加而增加;岩石的弹性模量也随着应变速率的增加而增加,但增加幅度小于抗拉强度的增加幅度;另外岩石的临界拉伸应变与应变速率也呈正相关性,但岩石的泊松比与应变速率的率相关性不是特别明显,表现得较为离散。并根据已有研究成果初步讨论了岩石在轴向拉伸情况的动态力学特性机理。  相似文献   

8.
深部岩石工程围岩处于三高一扰动的复杂地质环境,岩石的力学性质表现出与浅部岩石不同的特征。因此研究温度损伤后岩石在不同含水条件下动态压缩特性在岩石工程中具有重要意义。研究选取均质的细颗粒房山大理岩,利用自主研发的50 mm直径的分离式霍普金森杆压杆(split Hopkinson pressure bar,SHPB)系统,进行4种温度(25℃,105℃,450℃,700℃)损伤梯度下,干燥和饱水2种状态的单轴动态压缩加载试验;研究小孔隙率岩石温–水作用下的动态压缩特性。研究结果表明:随着温度的增加,大理岩的纵波波速均呈先上升后下降趋势,超过450℃时下降幅度明显;在试验所得加载率范围内,每级温度载荷下大理岩的动态压缩强度均有明显的率相关性,且和室温相比其他温度下岩石动态强度随着加载率的增加更加明显;当加载率一定时,温度损伤后干燥状态的岩石动态抗压强度随着温度的升高呈现明显的下降趋势,饱水状态的岩石呈现同样的变化趋势。经过105℃处理的损伤岩石,饱水和干燥状态下动态压缩强度近乎一致,而在450℃条件下,饱和岩石的动态压缩强度比干燥条件岩石的动态强度有所增加,压缩强度存在饱水强化现象,在700℃条件下,损伤岩石的饱水强化现象更加明显,并在高加载率下(加载率大于1500GPa/s),随着加载率的增加饱水大理岩动态强度增加较干燥大理岩更快。  相似文献   

9.
花岗岩动态轴向拉伸力学性能试验研究   总被引:4,自引:1,他引:3  
在MTS试验机上对花岗岩进行不同应变率(10-6~10-2 s-1)、不同预静载下的冲击加载以及变幅三角波荷载下的动态轴向拉伸系列试验。试验结果表明:在10-6~10-2 s-1应变率范围内,岩石抗拉强度随应变率提高近线性增长;花岗岩的弹性模量随应变率变化无明显变化;峰值应变随应变率增大有增长的趋势,极限应变没有明显的率敏感性;不同应变率的名义应力–应变全曲线的上升段在约40%强度以前呈线性,之后出现明显非线性变形,但随着应变率的增加,非线性程度降低;下降段可简化为两段折线:从峰值卸载至25%强度时,出现拐点,此时应变为300~400με,此后应变增长速度加快,降至残余应力10%强度处时,应变为600~900με;50%以下预静载不会对花岗岩的动载强度产生不利,反而有所增强;更高的预静载则会降低动载强度;在往复加载的低周疲劳引起的损伤累积下,岩石的动强度低于单调加载;随着循环次数的增加,残余应变逐渐增加,且增加的幅度亦有所加大,出现损伤软化的特征。  相似文献   

10.
从某场地钻取典型花岗岩岩芯试样,借助75 mm直径SHPB装置和低温冻结设备,分别对-15 ℃和25 ℃饱水花岗岩试件施加应变率大小近乎相等的4种冲击荷载,以探究饱水冻结花岗岩动力学特性的应变率效应。试验结果表明:同等应变率冲击加载下,饱水冻结花岗岩的峰值强度更高,抗剪切强度增加,动态弹性模量变为近似直线型增长;相比25 ℃饱水花岗岩,-15 ℃饱水冻结花岗岩破坏需要更高的冲击应变率,破坏时的峰值应变减小。饱水冻结花岗岩内部复合结构裂纹的形成与耗散能紧密相关,耗散能越大,裂纹越多,用耗散能表征的损伤变量值可以判断岩石的破碎程度,-15 ℃冻结饱水花岗岩破坏时的损伤变量值为0.22。研究方法为确定高寒地区冻结岩体的动力学参数提供依据。  相似文献   

11.
大岗山花岗岩动态力学特性的试验研究   总被引:1,自引:0,他引:1  
以大岗山花岗岩为例,分别进行静力三轴和动力三轴试验,分析花岗岩的抗压强度、弹性模量、泊松比以及相应的极限应变等重要参数与应变速率的关系。试验结果表明:不同围压下,随应变速率的增加,花岗岩的侧向破坏应变随应变速率的增加几乎保持不变,并且绝大部分统计结果值在0.002~0.004范围内;轴向破坏应变的增加幅度不明显;抗压强度增加,试验现象明显;弹性模量的提高幅度随围压的增加有减小的趋势;不同围压下花岗岩的泊松比与应变速率没有明确的关系。基于大岗山花岗岩静力三轴测试全过程应力–应变曲线和损伤力学分析,发现脆性岩石在不同围压下均以侧向损伤为主,通过回归拟合分析,建立大岗山花岗岩静力三轴压缩条件下的损伤演化方程。进一步根据损伤理论建立岩石动力损伤与静力损伤之间的关系,考虑动态强度与初始弹性模量的率相关性建立经验型的岩石动力损伤本构模型,可以作为研究地震荷载作用下岩体结构中应力波传播和衰减规律的基础。  相似文献   

12.
利用Φ50 mm霍普金森压杆试验系统,对平行、垂直两种层理煤岩展开单轴冲击压缩试验,探讨不同应变率下层理煤岩动态破坏的能量变化规律和损伤演化特性,并引入裂纹扩展系数K分析其能量耗散全过程,以期更好地为层理煤岩开采破碎、灾害防治提供参考。研究表明:层理煤岩应变率效应明显,且存在特征界限响应应变率;随着应变率的增大,层理效应对煤岩力学特性参数及能量变化规律影响呈减弱趋势。垂直层理方向加载能够较大地抑制能量吸收与裂纹扩展,沿层理面方向加载可以有效提升煤岩破碎效果。基于能量耗散理论定义的损伤变量随时间呈S型增长,抗压强度对应的损伤变量随应变率呈线性减小,且平行层理煤岩减小速率较垂直层理煤岩大。  相似文献   

13.
一维动静组合加载下砂岩动力学特性的试验研究   总被引:9,自引:4,他引:5  
 基于对深部岩石承受高地应力并在动力开挖扰动下发生破坏这一问题的科学认识,利用改造的劈裂霍普金森压杆动静组合加载试验装置,开展一维动静组合加载下砂岩的动力学特性试验研究。选取无轴压和3个典型轴压水平4种情形,开展不同应变率下的冲击试验。研究结果表明,相同应变率下岩石对外界冲击的响应受轴压比影响很大,冲击强度会随着轴压比的增加出现先增加后减小的趋势,在轴压比为0.6~0.7时达到最大值。相同轴压下,冲击强度会随着应变率的增加而增加,呈现指数函数关系。在一定的轴压比范围内,随着入射能的递增,岩石在加载破坏试验中先后会经历“吸收能量–释放能量–吸收能量”3个阶段。这3个阶段可以较好的解释高应力下岩石的动态强度递增、岩爆发生和诱导致裂三者之间的互相转化机制,对深部岩石工程的实践可以提供理论上的指导。  相似文献   

14.
利用改进的霍普金森压杆对不同围压、不同应变率下的岩样进行了试验研究,分析了其在中高应变率下的冲击响应特征与破坏模式。基于试验结果发现在围压一定情况下,岩石的动态抗压强度和峰值应变随应变率的增大而增大,其中抗压强度随应变率呈对数增长;弹性模量对围压和应变率不敏感,且应变率越大岩石破碎现象越严重。其次,在应变率相近情况下,花岗岩的动态抗压强度随围压呈增大趋势,其破坏模式由低围压下的轴向劈裂转向高围压下的压剪破坏;高围压下花岗岩应力–应变曲线出现屈服平台,具有明显的脆—延性转化特征。最后,检验了莫尔–库仑准则和霍克–布朗准则的适用性,指出此花岗岩更符合莫尔–库仑准则,其动态强度增大主要由黏聚力的应变率效应引起。  相似文献   

15.
为研究循环加卸载作用下岩石的强度及变形特征,以隧道工程区域内的花岗岩为对象,采用室内岩石力学试验方法,得到了以下结论.(1)单轴循环荷载作用下花岗岩的最终破裂面明显多于单调加载,而三轴条件下,两种加载方式的破坏模式较为接近;(2)循环荷载作用下花岗岩的峰值强度显著降低;单调加载下的花岗岩表现为脆性破坏,而循环加载下花岗...  相似文献   

16.
岩石动静组合加载力学特性研究   总被引:30,自引:12,他引:18  
 根据深部岩石力学研究的需要,在分析深部开挖中岩石受力特点的基础上,提出岩石动静组合加载问题。通过对多载荷凿岩机、INSTRON系统、SHPB装置的不断改进和尝试,研制出中高应变率段岩石动静组合加载试验系统,该系统可实现岩石轴向静压0~200 MPa、围压0~200 MPa和冲击动载0~500 MPa的同时加载。基于新研制的试验系统,对岩石在不同动静组合加载下的强度特性、破碎规律及吸能效率进行研究。结果表明:冲击动载一定,轴向静压从0增大到其单轴静压强度70%时,岩石的组合加载强度大于其纯静载强度或纯动载强度。轴向静压不变,随着冲击动载的增大,岩石的组合加载强度逐渐增大,表现出率相关性。动静组合加载下,岩石的破坏呈拉伸破裂模式,岩石的破碎块度在冲击动载或轴向静压增大时都向细粒端发展。岩石的吸能率随着动静组合加载的不同而不同,通过选择合适的动静组合加载,可使岩石的吸能率最大。  相似文献   

17.
花岗岩和混凝土在单轴冲击压缩荷载下的动态性能比较   总被引:7,自引:4,他引:7  
采用黄铜波形整形器改进后的分离式Hopkinson压杆装置,分别对花岗岩和混凝土试件进行不同应变率(101~103)s-1下的单轴冲击压缩试验,有效地减少传统Hopkinson压杆试验中,岩石类脆性材料在内部应力达到均衡之前过早破坏以及输入波的高频震荡给试验数据带来的波动性。试验结果表明,应变率不仅影响这2种岩石类材料的强度,而且也影响材料的破碎程度和破碎形式,但对材料的初始弹性模量、破坏应变以及能量吸收率影响不大。从花岗岩和混凝土材料的微观结构特征和能量吸收能力等方面,对比分析这2种材料动态性能的共同特点和相互差异,合理地解释试验现象。该方法与结论对其他类型的脆性材料的动态性能研究具有一定的参考价值。  相似文献   

18.
围压与温度共同作用下盐岩的SHPB实验及数值分析   总被引:2,自引:1,他引:1  
 在自主研制的可进行围压和温度共同加载的分离式Hopkinson压杆(SHPB)实验装置TSCPT-SHPB基础上,对盐岩在5~25 MPa围压作用下的轴向动力性能以及盐岩在40 ℃~80 ℃,0.0~0.5 MPa围压下进行实验研究,分析围压和应变率对盐岩在围压作用下轴向抗压强度动力增长系数(DIF)的影响,以及温度和围压对盐岩动态力学性能的影响。结果表明:在动态作用下,围压对盐岩延性的提高有显著影响;盐岩属率敏感性和温度敏感性材料,其峰值强度随应变率的提高而提高,在低围压下的提高幅度比高围压下显著,并得到实验范围内盐岩材料动力增长系数(DIF)与围压和应变率关系的表达式;在高应变率(400 s-1)条件下,盐岩的动态峰值强度随温度的升高而降低,并依据实验数据,拟合得到峰值强度在各实验温度下随围压变化的计算公式。为考虑应变软化效应,对ABAQUS有限元软件中的Drucker-Prager模型进行改进,并基于单向动态围压下的实验数据拟合的计算参数,对盐岩TSCP-SHPB实验进行数值模拟,模拟结果与实验结果吻合较好。  相似文献   

19.
 加载速率对岩石力学性质具有重要影响,影响的程度与岩石本身的微结构和加、卸载应力路径及状态等密切相关。基于静态加载速率范围内的9个不同等级应变率下粗晶大理岩单轴压缩试验,研究加载应变率对岩石的应力–应变曲线、破坏形态、强度、弹性模量及变形模量与应变能耗散及释放的影响规律,探讨岩石损伤演化的能量机制。根据总体积应变及裂纹体积应变与起裂及扩容应力的相关性,确定各应变率下岩石起裂及临界扩容应力。加载应变率大约以1×10-3 s-1为分界点,小于该值时应力–应变曲线峰值点附近仍存在一定的塑性屈服或流动段,超过该值后表现为“折线”型。随着加载应变率的增加,岩样破裂模式由张剪型逐渐过渡到张性劈裂甚至劈裂弹射。一般而言,起裂及临界扩容应力和峰值应力均随加载速率增大而增大,且起裂及临界扩容应力越接近峰值强度,但当应变率为1×10-4~1×10-3 s-1时,上述值均出现一个相对低值区间,这与粗晶大理岩的微结构特征相关。起裂应力、临界扩容应力、弹性模量及变形模量均与峰值强度线性相关。单轴压缩下峰前能量耗散量越多,强度越高,峰后可释放弹性应变能和释放速率越大,岩石的张性贯通破裂特性愈强,破裂块数越多。能量耗散使岩石损伤而强度丧失,而能量释放使岩石宏观破裂面贯通而整体破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号