首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural rubber (NR), epoxidized natural rubber (ENR), and chlorosulfonated polyethylene (CSM) composites filled with conductive carbon black and aluminum powder have been prepared by using a two‐roll mill. An electromagnetic interference shielding effectiveness of those rubber composites was carried out in the frequency range of 8–12GHz (X‐band microwave). The increase of filler loading enhanced shielding effectiveness of the rubber composites. Conductive carbon black was more effective in shielding than aluminum powder. Binary filler‐filled rubber composites showed higher shielding effectiveness than that of single filler‐filled rubber composites. It has been observed that the shielding effectiveness of these rubber composites could be ranked in the following order: ENR ≥ CSM > NR, whereas the mechanical properties of the rubber composites were in the order of CSM > ENR > NR. The correlation between shielding effectiveness and electrical conductivity as well as mechanical properties of the rubber composites are also discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
Carbon black, short carbon fiber (SCF), and multiwall carbon nano‐tube (MWNT)‐filled conductive composites were prepared from ethylene vinyl acetate copolymer. The dielectric property and electromagnetic interference (EMI) shielding of carbon black, MWNT, and SCF‐filled composites were studied with different filler loadings. The dielectric constant and loss of filled polymer composites is due to the formation of interfacial polarization in the polymer matrix. It was found that the dielectric constant, dielectric loss, and EMI shielding of filled composites depends on amount and type of filler loading. The results of different experiments have been discussed in the light of break down and formation of continuous conductive network in polymer matrix. The results indicate that these composites can be used as effective EMI shielding materials. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers.  相似文献   

3.
Electromagnetic interference shielding of magneto-dielectric (BaTiO3-Fe3O4) and magneto-conducting (f-MWCNT-Fe3O4) fillers based polymer electrolyte composites in the X-band have been studied in the present work. Magneto-dielectric and magneto-conducting fillers have been obtained by in situ preparation of Fe3O4 nanoparticles by chemical precipitation in the presence of BaTiO3 and functionalized multiwalled carbon nanotubes (f-MWCNT). Functionalization of MWCNT has resulted in their strong bonding with the polymer electrolyte adversely affecting the charge transport properties and shielding effectiveness. Dielectric, magnetic and conducting properties of the magneto-dielectric and magneto-conducting fillers are found to be significantly different as a result of coating by Fe3O4 nanoparticles on BaTiO3 and f-MWCNT. Combining two fillers in a single nanocomposite has exhibited non-complimentary addition of their individual properties. The ultra-sonication method of dispersion of the magneto-conducting filler has been found to give better conducting and shielding effectiveness in comparison to the homogenization method due to better disentanglement of the nanotubes.  相似文献   

4.
Thermally conductive and electromagnetic interference shielding composites comprising low content of Ag‐plating carbon fiber (APCF) were fabricated as electronic packing materials. APCF as conductive filler consisting of carbon fiber (CF) employed as the structural component to reinforce the mechanical strength, and Ag enhancing electrical conductivity, was prepared by advanced electroless Ag‐plating processing on CF surfaces. Ag coating had a thickness of 450 nm without oxide phase detected. The incorporation of 4.5 wt % APCF into epoxy (EP) substrate yielded thermal conductivity of 2.33 W/m·K, which is approximately 2.6 times higher than CF–EP composite at the same loading. The APCF–EP composite performed electromagnetic shielding effectiveness of 38–35 dB at frequency ranging from 8.2 to 12.4 GHz in the X band, and electromagnetic reflection was the dominant shielding mechanism. At loading content of APCF up to 7 wt %, thermal conductivity of APCF–EP composites increased to 2.49 W/m·K. Volume resistivity and surface resistivity decreased to 9.5 × 103 Ω·cm and 6.2 × 102 Ω, respectively, which approached a metal. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42306.  相似文献   

5.
Harmful electromagnetic radiations that are generated from different electronic devices could be absorbed by a light weight and mechanically flexible good electromagnetic interference (EMI) shielding polymer nanocomposite. On the other hand, different electronic wastes (“e-wastes”) which are generally polymer building materials generated from wastes of dysfunctional electronic devices are not naturally biodegradable. Our recent effort has been employed to produce bio-degradable EMI shielding polymer nanocomposite. For that purpose, we had prepared a 50:50 ratio polylactic acid/thermoplastic polyurethane polymer nanocomposite by mixing the conducting carbon black with the blend following the facile and industrially feasible solution mixing method. Morphological characterizations by scanning electron microscopy and transmission electron microscopy analysis revealed the co-continuous morphology of the neat blend as well as polymer nanocomposites with the preferential distribution of conductive filler on a particular polymer phase. The polymer nanocomposites gave good mechanically with improved thermal properties. We got EMI shielding effectiveness around −27 dB with a low percolation threshold at around 30 wt% filler loading in the polymer nanocomposite at the X-band frequency domain (8.2–12.4 GHz). Later we had studied the biodegradability of the PLA/TPU along with their composites (TXPXCX) by employing the respirometry method and got a satisfactory result to ensure their biodegradability.  相似文献   

6.
High‐performance barium titanate (BaTiO3) filled poly(ether ketone) (PEK) composites were prepared by melt compounding with an aim to investigate the effect of BaTiO3 on thermal, thermomechanical, dielectric, and electromagnetic interference shielding behavior of PEK. The content of BaTiO3 in the PEK matrix was varied from 0 to 18 vol %. Scanning electron microscopy studies shows that BaTiO3 particles were uniformly distributed in the PEK matrix up to 13 vol % loading followed by the formation of agglomerates at higher loading (18 vol %). Rockwell hardness increased up to 13 vol % loading followed by a decrease at 18 vol % loading. Dynamic mechanical analysis revealed that storage modulus increases with increase in BaTiO3 loading with a maximum value of 3192 MPa at 13 vol % compared to 2099 MPa for neat PEK. Dielectric constant of composites measured in the frequency range of 8.2–12.4 GHz increased approximately three times upon incorporation of 18 vol % of BaTiO3. This increment in dielectric constant is reflected in improved electromagnetic shielding properties as loading of dielectric filler (BaTiO3) increases. Total shielding effectiveness of ?11 dB (~92% attenuation) at loading of 18 vol % BaTiO3 justifies the use of these composites for suppression of EM radiations. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46413.  相似文献   

7.
Conducting composites of polyaniline doped with dodecylbenzenesulfonic acid (PAni.DBSA), carbon black (CB) and poly(styrene‐b‐styrene‐butadiene‐b‐styrene) (STF) as supporting matrix were prepared by in situ polymerization. The influence of components and composition (% w/w) on the electromagnetic properties (dielectric constant ε′ and the dielectric loss ε″) and electromagnetic interference shielding effectiveness (EMI‐SE) of the materials were evaluated with a waveguide, using a microwave network analyzer from 8.2 to 12.4 GHz (X‐band). It was found that CB presence generates adverse effects on PAni.DBSA yield during synthesis, as it can be seen by X‐ray diffraction and TGA analyses. The type of PAni.DBSA formed modifies the composites properties. Dielectric constant, loss factor, and EMI shielding increase with conductive filler loading. Both the fillers, individually and in combination, increase the properties; however, the effect is not additive in nature. POLYM. ENG. SCI., 52:2041–2048, 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
This article describes the development of new carbon black material from agricultural waste (wood apple shells) by using pyrolysis method at various carbonization temperatures (400, 600, and 800°C) and used as reinforcement in polymer composites. The wood apple shell carbon black (WAS‐CB) particulates are characterized by proximate analysis, energy dispersive spectroscopy (EDS), and scanning electron microscope (SEM). Results showed that due to increases in carbonization temperature the percentage of carbon improved in the carbon black particles. Furthermore, various tests were performed to determine the effect of new carbon black material on the mechanical properties of composite at different filler loading. The results indicated that mechanical properties like tensile strength, tensile modulus, flexural strength, and flexural modulus are improved as the increase in the carbonization temperature and filler loading. The filler‐matrix bonding was analyzed by SEM. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41211.  相似文献   

9.
The dielectric relaxation characteristics of conductive carbon black (CCB) reinforced ethylene acrylic elastomer (AEM) vulcanizates have been studied as a function of frequency (101–106 Hz) at different filler loading over a wide range of temperatures (30–120°C). The effect of filler loadings on the dielectric permittivity (ε′), loss tangent (tan δ), complex impedance (Z*), and electrical conductivity (σac) were studied. The variation of ε′ with filler loading has been explained based on the interfacial polarization of the fillers within a heterogeneous system. The effect of filler loading on the imaginary (Z″) and real (Z′) part of Z* were distinctly visible, which may be due to the relaxation dynamics of polymer chains at the polymer–filler interface. The frequency dependency of σac has been investigated using percolation theory. The phenomenon of percolation in the composites has been discussed in terms of σac. The percolation threshold (?crit) occurred in the range of 20–30 phr (parts per hundred) of filler loading. The effect of temperature on tan δ, ε′, σac, and Nyquist plots of CCB‐based AEM vulcanizates has been investigated. The CCB was uniformly dispersed within the AEM matrix as studied from the transmission electron microscope (TEM) photomicrographs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Electrical conductivity and electromagnetic interference (EMI) shielding effectiveness at microwave (200–2000 MHz) and X‐band (8–12 GHz) frequency range of polyaniline (PAni) composites were studied. It has been observed that EMI shielding of conductive polyaniline (PAni)–ethylene vinyl acetate composites increases with the increase in the loading levels of the conductive polymer doped with dodecylbenzene sulfonic acid. The result indicates that the composites having higher PAni loading (>23%) can be used for EMI shielding materials and those with lower PAni loading can be used for the dissipation of electrostatic charge. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
The electrical conductivity of polymeric materials can be increased by the addition of carbon fillers, such as carbon fibers, carbon black, and synthetic graphite. The resulting composites could be used in applications such as electromagnetic and radio frequency interference shielding and electrostatic dissipation. A significant amount of work has been conducted varying the amount of single conductive fillers in a composite material. In contrast, very limited work has been conducted concerning the effect of combinations of various types of conductive fillers. In this study, three different carbon fillers were used: carbon black, synthetic graphite pareticles, and pitch based carbon fiber. Two different polymers were used: nylon 6,6 and polycarbonate. The goal of this project was to determine the effect of each filler and combinations of different fillers on the electrical conductivity of conductive resins. A 23 factorial design was analyzed to determine the effects of the three different carbon fillers in nylon 6,6 and polycarbonate. The results showed that carbon black caused the largest increase in composite electrical conductivity. The factorial design analysis also showed that combinations of different carbon fillers do have a positive synergistic effect, thereby increasing the composite electrical conductivity.  相似文献   

12.
Flexible conductive polymer composites were prepared using styrene–butadiene rubber (SBR) as a matrix and conductive carbon black as filler. The filler loading was varied from 10 to 60 phr. The complex AC impedance and electromagnetic interference shielding effectiveness (EMI SE) of the composites were measured at the microwave frequencies of 7.8–12.4 GHz. The effect of variation in filler concentration and measurement frequency on the AC impedance and EMI SE of the composites were investigated. Equivalent circuits describing the conduction behavior of the composites were determined by means of Nyquist plots. The complex electric modulus of the composites was also determined. Increase in the filler loading increased the capacitive nature of the materials. The composites were better defined by a parallel resistor–capacitor circuit in series with a resistor. The EMI SE was found to pass through a maximum with increase in frequency. However, with the increase in filler loading and sample thickness of the material, the EMI SE was found to increase continuously. POLYM. ENG. SCI., 46:1342–1349, 2006. © 2006 Society of Plastics Engineers.  相似文献   

13.
The effects of hybrid fillers on the electrical conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) of polyamide 6 (PA6)/polypropylene (PP) immiscible polymer blends were investigated. Carbon black (CB) and steam exploded sisal fiber (SF) were used as fillers. CB was coated on the surface of SF, and this was exploded by water steam to form carbon black modified sisal fiber (CBMSF). CB/SF/PA6/PP composites were prepared by melt compounding, and its electromagnetic SE was tested in low‐frequency and high‐frequency ranges. We observed that SF greatly contributed to the effective decrease in the percolation threshold of CB in the PA6/PP matrix and adsorbed carbon particles to form a conductive network. Furthermore, an appropriate CB/SF ratio was important for achieving the best shielding performance. The results indicate that CBMSF was suitable for use as electronic conductive fillers and the CB/SF/PA6/PP composites could be used for the purpose of EMI shielding. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42801.  相似文献   

14.
Electrically conductive nanocomposites based on ethylene acrylic elastomer (AEM) and multiwalled carbon nanotube (MWNT) have been successfully prepared. Before mixing the MWNT is dispersed in ethanol in presence of ionic liquids such as 1‐methyl‐3‐octylimidazolium chloride (MOIC) and 1‐allyl‐3‐methyl imidazolium chloride (AMIC). Uniform dispersion of MWNT in the nanocomposites is achieved in presence of ionic liquid, which is confirmed by the high‐resolution transmission electron microscopic (HRTEM) microphotographs. The tensile strength increases up to 6 phr of MWNT loading and above that it decreases. However, the tensile strength increases due to the incorporation of ionic liquid assisted dispersed MWNT. It is observed from the dynamic mechanical analysis (DMA) that the storage modulus (E′) and glass transition temperature (Tg) of AEM matrix increase by incorporation of MWNT. The E′ also increases and the tan δmax marginally decreases due to the incorporation of dispersed MWNT in presence of ionic liquids. The dielectric relaxation characteristic properties of AEM/MWNT nanocomposites such as dielectric permittivity (ε′), AC conductivity (σac), impedance (Z*) have been studied as a function of frequency (101−106 Hz) in presence of ionic liquids. The ε′ and σac increase with increasing the MWNT loading due to the easy orientation of dipoles and formation of interconnected conductive networks in the nanocomposites. The electromagnetic interference shielding effectiveness (EMISE) is studied in the X‐band frequency range of 8 to 12 GHz, which significantly improved with increase in MWNT loading. POLYM. COMPOS., 37:2568–2580, 2016. © 2015 Society of Plastics Engineers  相似文献   

15.
A novel nitrile butadiene rubber (NBR)/magnetite (Fe3O4) nanocomposite for electromagnetic interference (EMI) shielding at microwave frequency was successfully fabricated. The structural features of as-synthesized magnetite and NBR/Fe3O4 were examined by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The number of elastically effective chains, volume fraction of rubber, interparticle distance among conductive sites, polymer–filler interaction, and porosity of the nanocomposites were evaluated. The mechanical properties, including the tensile strength, elongation at break, and hardness, of the composites were measured. The static electrical properties, such as the electrical conductivity, carrier mobility, and number of charge carriers, as a function of magnetite content were evaluated. The interrelation between the electrical conductivity, shielding effectiveness (SE), dielectric constant, and skin depth of the composites are discussed. Finally, the EMI SE versus frequency was tested. The results reveal that an SE of 28–91 dB against EMI in the 1–12 GHz range depended on the loading of the conducting magnetite within the NBR matrix. Accordingly, these nanocomposites may used in the field of microwave absorption devices. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Aluminum‐doped strontium hexaferrite nanoparticle SrAl1.3Fe10.7O19 was prepared by sol–gel method and polyaniline (PANi) multiphase magnetic nanocomposite SrAl1.3Fe10.7O19/MWCNT/PANi was synthesized through a sonochemical method by in situ polymerization. The morphology, structure, and magnetic properties of the nanocomposites are investigated by field emission scanning electron microscopy, X‐ray powder diffraction, Fourier transform infrared spectroscopy, and vibrating sample magnetometer. The electromagnetic interference shielding efficiency was evaluated in the KU‐band (12.4–18 GHz). The reflection loss (RL) value showed that the composites have an excellent absorbing property in the KU‐band, minimum ?24.93 dB at 16.40 GHz with a bandwidth of 2.81 GHz (shielding effectiveness up to 10 dB) at a matching thickness 6.5 mm. The RL value of the SrAl1.3Fe10.7O19/MWCNT nanocomposite was ?15.92 dB at 15.84 GHz with a bandwidth of 1.66 GHz (with a shielding effectiveness up to 10 dB). These results disclose the remarkable microwave shielding ability of SrAl1.3Fe10.7O19/MWCNT/PANi in KU‐band due to the interactive effect of the three components. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45135.  相似文献   

17.
Conductive polymer composites were prepared using vulcanized styrene–butadiene rubber as a matrix and conductive carbon black as a filler. The filler loading was varied from 10 to 60 phr. The volume resistivity was measured against the loading of the carbon black to verify the percolation limit. The electrical conductivity of filled polymer composites is attributed to the formation of some continuous conductive networks in the polymer matrix. These conductive networks involve specific arrangements of conductive elements (carbon black aggregates) so that the electrical paths are formed for free movement of electrons. The effects of temperature and pressure on the volume resistivity of the composites were studied. The volume resistivity of all the composites increased with increase in temperature, and the rate of increase in the resistivity against temperature depended on the loading of carbon black. The change in volume resistivity during the heating and cooling cycle did not follow the same route, leading to the phenomena of electrical hysteresis and electrical set. It was found that the composites with 40 and 60 phr carbon black become more conductive after undergoing the heat treatment. Generally, all the composites showed a positive temperature coefficient of resistivity. The volume resistivity of all the composites decreased with increase in pressure. The relaxation characteristic of the volume resistivity of the composites was studied with respect to time under a constant load. It was found that the volume resistivity of the compressed specimen of the composites decreased exponentially with time. It was observed that initially a faster relaxation process and later a slower relaxation process occurred in these composites. Some mechanical properties of these composites were also measured to confirm the efficacy of these composites for practical applications. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2179–2188, 2004  相似文献   

18.
A surface treatment was applied to carbon black to improve the electrical and microwave properties of poly(ethylene terephthalate) (PET)-based composites. Three different formamide solutions with 1, 2, and 3 wt % concentrations were prepared to modify the surface chemistry of carbon black. Microwave properties such as the absorption loss, return loss, insertion loss, and dielectric constant were measured in the frequency range of 8–12 GHz (X-band range). Composites containing formamide-treated carbon black exhibited enhancements in the electrical conductivity, electromagnetic interference (EMI) shielding effectiveness, and dielectric constant values when compared to composites with untreated carbon black. In addition, increases in the formamide solution concentration and carbon black content of composites resulted in an increase in the electrical conductivity, EMI shielding effectiveness, and dielectric constant values. The percolation threshold concentration of PET composites shifted from a 3 to 1.5 wt % carbon black composition with the surface treatment. The best EMI shielding effectiveness was around 27 dB, which was obtained with the composite containing 8 wt % carbon black treated with a 3 wt % formamide solution. Moreover, this composition gave the lowest electrical resistivity and the highest dielectric constant among the produced composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
This study is aimed at utilizing nutraceutical industrial waste and reducing carbon footprints of plastics. Eco‐friendly “green composites” of high density polyethylene (HDPE) were fabricated using coleus spent (CS)—a nutraceutical industrial waste as reinforcing filler and maleic anhydride‐graft‐polyethylene (MA‐g‐PE) as compatibilizer. Composites were fabricated with 5, 10, 15, and 20% (w/w) of CS by extrusion method. The fabricated HDPE/CS composites were evaluated for mechanical and thermal behavior. A slight improvement of about 5% in tensile strength and marked improvement of about 25% in tensile modulus for 20 wt % CS filled HDPE composites was noticed. The effect of CS content on rheological behavior was also studied. Thermal characteristics were performed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA thermogram indicated increased thermal stability of CS‐filled composites. From TGA curves the thermal degradation kinetic parameters of the composites have been calculated using Broido's method. The enthalpy of melting (ΔHm) obtained from DSC curves was reduced with increase in CS content in HDPE matrix, due to decrease in HDPE content in composite systems. An increase in CS loading increased the water absorption behavior of the composites slightly. Morphological behavior of cryo‐fractured composites has been studied using scanning electron microscopy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Binder‐free LiFePO4–carbon nanofiber (CNF)–multiwalled carbon nanotube (MWCNT) composites were prepared by electrospinning and thermal treatment to form a freestanding conductive web that could be used directly as a battery cathode without addition of a conductive material and polymer binder. The thermal decomposition behavior of the electrospun LiFePO4 precursor–polyacrylonitrile (PAN) and LiFePO4 precursor–PAN–MWCNT composites before and after stabilization were studied with thermogravimetric analysis (TGA)/differential scanning calorimetry and TGA/differential thermal analysis, respectively. The structure, morphology, and carbon content of the LiFePO4–CNF and LiFePO4–CNF–MWCNT composites were determined by X‐ray diffraction, high‐resolution transmission electron microscopy, Raman spectroscopy, scanning electron microscopy, and elemental analysis. The electrochemical properties of the LiFePO4–CNF and LiFePO4–CNF–MWCNT composite cathodes were measured by charge–discharge tests and electrochemical impedance spectroscopy. The synthesized composites with MWCNTs exhibited better rate performances and more stable cycle performances than the LiFePO4–CNF composites; this was due to the increase in electron transfer and lithium‐ion diffusion within the composites loaded with MWCNTs. The composites containing 0.15 wt % MWCNTs delivered a proper initial discharge capacity of 156.7 mA h g?1 at 0.5 C rate and a stable cycle ability on the basis of the weight of the active material, LiFePO4. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号