首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dispersion polymerization of n‐butyl acrylate (BA) was investigated using alcohol/water mixtures as the dispersion medium, 4,4′ ‐azobis‐(4‐cyanopentanoic acid) as the initiator, and polyvinylpyrrolidone (PVP) as the stabilizer. The effects of polymerization parameters, such as the alcohol/water ratio in the medium and the type and concentration of the polymeric stabilizer, on the resulting particle size and size distribution were studied. The final particle size and the stability of the dispersion system were found to be greatly influenced by the type of alcohol used in the mixture; that is, methanol or ethanol, even though the apparent solubility parameters are almost the same for the two types of mixtures. Poly(butyl acrylate) particles with controlled size and size distribution (monodisperse), and gel content were successfully prepared in a 90/10 methanol/water medium. It was found that the particle size decreased with increasing initiator concentration. This is the opposite of what was previously reported in the dispersion polymerizations of styrene and methyl methacrylate. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2692–2709, 2002  相似文献   

2.
Micron-size monodisperse poly(methyl methacrylate) particles were prepared by dispersion copolymerization of methyl methacrylate with a hydrophilic poly(2-oxazoline) macromonomer in an aqueous methanol solution. The macromonomer acted as a comonomer as well as a stabilizer. As the macromonomer concentration increased, the diameter of the particles decreased. The macromonomer with higher molecular weight, or with more hydrophilic nature, stabilized the particles more effectively The diameter of the particles was dependent on the initiator concentration. Under the conditions giving monodisperse particles, the particle volume increased linearly with the yield of the particles and the particle number was almost constant during the copolymerization. From ESCA analysis of the particle surface, poly(2-oxazoline) chains were enriched on the surface.  相似文献   

3.
A 3.84 um monodisperse poly(methyl methacrylate) (PMMA) microsphere was prepared by dispersion polymerization in methanol (MeOH)/water (H2O) media. 2,2′-azobis(isobutyronitrile) (AIBN) and poly(acrylic acid) (PAA) were utilized as initiator and steric stabilizer, respectively. The effects of the PAA stabilizer, AIBN initiator, H2O solvent and MMA monomer on PMMA particle size and size distribution were reviewed in the first section. The optical properties including total transmittance (T%) and transmittance haze (H%) were performed when the monodisperse PMMA microsphere was applied as a diffusive agent. The result was examined in terms of total interface area in system, and to compare with the performance of three polystyrene (PSt) microspheres with 1.10 um, 3.13 um and 5.21 um in diameter under the same condition.  相似文献   

4.
The dispersion polymerization of methyl methacrylate (MMA) with fluorescent monomer tris[2‐((8‐hydroxyquinolin‐5‐yl)methoxy)ethyl methacrylate]aluminium (Al‐HQHEMA) was investigated to obtain fluorescent microspheres under varying conditions (such as composition of dispersion medium, and content of stabilizer polyvinylpyrrolidone (PVP) and Al‐HQHEMA) in methanol–water at 70 °C with 2,2′‐azoisobutyronitrile as the initiator. Fluorescent microspheres with particle size of 2.039 µm and uniformity of 0.171 were obtained under the following conditions: methanol–water, 7:3 (v/v); PVP, 15 wt% of MMA; Al‐HQHEMA solution, 1.5 mL. Maleic monoester of monomethoxyl poly(ethylene glycol) (Mal‐MPEG) was used as a comonomer to simultaneously incorporate carboxyl groups and PEG chains. With Mal‐MPEG, no aggregation was observed in the measurements of particle size and size distribution for the obtained microspheres after cleaning off PVP, indicating that self‐stabilized fluorescent microspheres were obtained. While without Mal‐MPEG, obvious aggregation was observed. The determination of surface carboxyl content using aqueous acid–base titration showed that most of the carboxyl groups of Mal‐MPEG were located on the surface of the microspheres. © 2015 Society of Chemical Industry  相似文献   

5.
Methyl methacrylate was polymerized in an aqueous medium in the presence of gelatin using potassium persulfate as initiator. The dispersion mode of polymerization, when the monomer is completely miscible with water, was investigated and compared with an emulsion process, which proceeds at higher monomer concentration. Spherical and relatively uniform polymer particles were formed. Macroscopic precipitation of polymer is prevented by combination of the steric stabilization by grafted gelatin and of repulsive electrostatic interactions from the initiator residues attached to the particle surface. Static and dynamic light scattering have been used to determine the molar mass (molar mass of the whole dispersion particle, MwD ~ 108-109 g mol?1) and hydrodynamic radius (RhD ~ 50-120 nm) of the particles. The number of particles per unit volume does not depend on overall monomer concentration, and it is higher, and therefore the particle size is smaller, than that observed for the soapless emulsion polymerization. The addition of gelatin may be thus used to modify the particle size. Acrylonitrile dispersions were prepared under similar conditions. Unlike methyl methacrylate, this monomer does not swell the polymer particles. While poly(methyl methacrylate) particles are spherical and relatively uniform, the polyacrylonitrile dispersions consist of polydisperse aggregates of tiny polymer particles.  相似文献   

6.
Poly(lactic acid)/poly(methyl methacrylate) blends containing halloysite nanotube (2 and 5 phr) and epoxidized natural rubber (5–15 phr) were prepared by melt mixing. The impact strength of poly(lactic acid)/poly(methyl methacrylate) blend was slightly improved by the addition of halloysite nanotube. Adding epoxidized natural rubber further increased the impact strength of poly(lactic acid)/poly(methyl methacrylate)/halloysite nanotube nanocomposite. Single Tg of poly(lactic acid)/poly(methyl methacrylate) is observed and this indicates that poly(lactic acid)/poly(methyl methacrylate) blend is miscible. The addition of halloysite nanotube into poly(lactic acid)/poly(methyl methacrylate) slightly increased the Tg of the blends. The epoxidized natural rubber could encapsulate some of the halloysite nanotube and prevent the halloysite nanotube from breaking into shorter length tube during the melt shearing process.  相似文献   

7.
The mass transport of methanol mixed with ferric chloride hexahydrate (FeCl3 · 6H2O) in poly(methyl methacrylate) and poly(methyl methacrylate)/iron carbonate particulate(p) nanocomposites is prepared by chemical vapor crystallization and the resulting materials, which are subjected to characterization to evaluate thermal and optical properties, have been investigated. Mass transport is an anomalous and endothermic process and satisfies the van't Hoff plot. We have prepared successfully poly(methyl methacrylate)(PMMA)/iron carbonate particulates nanocomposites using CO2 gas slowly diffused into saturated solvent mixture‐treated poly(methyl methacrylate) for 48 h. After SEM observation, approximately 80 nm iron carbonate particulates were precipitated and evenly distributed in the poly(methyl methacrylate) matrix. In comparison with solvent mixture‐treated PMMA, the cut‐off wavelength of transmittance in nanocomposites shifts to the shorter wavelength side (red shift). The presence of nanoscale iron carbonate particulates increased the glass transition temperature of the nanocomposites as determined by differential scanning calorimeter, and the glass transition temperature increased with increasing content of nanoscale iron carbonate particulates. The FTIR spectra of solvent mixture‐treated poly(methyl methacrylate) and nanocomposites are also studied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2329–2338, 2005  相似文献   

8.
Multi-walled carbon nanotube (MWNT) embedded monodisperse poly(methyl methacrylate) (PMMA) microspheres were synthesized via an in-situ dispersion polymerization by employing an ultrasonication, and their various characteristics were investigated. Particle size distribution of the synthesized PMMA microbeads with MWNT under ultrasonication became narrower and monodisperse. Surface morphology of the PMMA microspheres synthesized in the presence of the MWNT was examined by SEM, showing that the MWNTs were adhered onto the surface of PMMA microbeads. The synthesized MWNT/PMMA microspheres were also characterized by zeta-potential measurement and TGA for their electric and thermal stability studies, respectively, exhibiting that the addition of MWNTs as a filler improved the intrinsic properties of the PMMA along with electrorheology.  相似文献   

9.
Monosize Polystyrene microbeads were prepared by dispersion polymerization in different alcohol/ water media. Azobisisobutyronitrile and polyacrylic acid were utilized as initiator and steric stabilizer, respectively. The polymerizations were performed in three kinds of dispersion media having different polarities: isopropanol/water, 1-butanol/water, and 2-butanol/water. The effects of initiator and stabilizer concentrations, alcohol/water ratio, and monomer/dispersion medium ratio on the size and monodispersity of the polymeric microbeads were investigated. By dispersion polymerization, polystyrene (PS) microbeads were obtained in the size range of 1.0–4.0 μm with narrow size distribution or in the monosize form. The average size and size distribution of microbeads with increasing polarity of the dispersion medium. The average size and size distribution increased with increasing initiator concentration in all dispersion media. The increase in the stabilizer concentration in homogeneous dispersion media resulted in a decrease in average size and size distribution of the microbeads. A clear increase was observed in the average size with increasing monomer/dispersion medium ratio. Isopropanol/water dispersion medium provided monosize microbeads with higher values of monomer/dispersion medium ratio. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Synthesis and optical properties of cocoon-like poly(methyl methacrylate) (CPM) particles in the size range of D n  = 3.0–6.5 μm were studied. The synthesis of these anisotropic particles consists of two steps. The spherical poly(methyl methacrylate) (PMA) particles (D n  = 2.2–5.5 μm) cross-linked by 0.2–0.8 wt% ethylene glycol dimethacrylate (EGDMA) were prepared by dispersion polymerization, using a combination of poly(vinyl pyrrolidone) (PVP) and sodium di-(2-ethylhexyl) sulfosuccinate (NaEHS) as a stabilizer in 94:840 water–methanol. Then, a suspension polymerization of 9:1 methyl methacrylate (MMA)/EGDMA in the presence of the PMA particles as seed at 85 °C in water gave non-spherical, cocoon-like CPM particles, depending on the cross-linking densities of PMA particles. The cocoon-like CPM particles (D n,c  = 4.0 μm) showed the characteristic features of regular reflection, which can not be attained for conventional poly(methyl methacrylate) particles with a spherical shape. The effects of seed PMA particles with different properties on the formation of cocoon-like CPM particles and their regular reflection properties are described.  相似文献   

11.
Evolutions of drop/particle size and size distribution in liquid–liquid dispersions and suspension polymerizations of methyl methacrylate (MMA) were monitored by using an online optical reflectance measurement (ORM), and effects of operating parameters such as the agitation rate, concentration of poly(vinyl alcohol) (PVA) dispersant, and initial concentration of poly(methyl methacrylate) (PMMA) in MMA monomer on the Sauter mean diameter (d32) and size distribution of drop/particle were investigated. According to the variations of d32 of drops/particles with time, four characteristic particle formation stages can be identified for suspension polymerization process. The factors that lead to increase the rate of drop break up, such as increasing of concentration of PVA and decreasing of viscosity of dispersed phase, would postpone the particle growth stage. The d32 and size distribution breadth of drops/particles were significant increased when the liquid–liquid dispersions or suspension polymerizations were conducted at low PVA concentrations or MMA/PMMA solutions with high PMMA contents were used as the dispersed phase, in consistent with the scanning electron micrograph observation on final PMMA particles. It is clear that ORM can be effectively applied in online monitoring of size and size distribution of drops/particles in the liquid–liquid dispersions and suspension polymerizations. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43632.  相似文献   

12.
The behavior of silicon powder dispersed in two nonaqueous processing media (benzene and trichloroethylene) with various adsorbed polymeric stabilizers (poly(styrene), poly-(methyl methacrylate), and their copolymer) has been studied. Measured adsorption isotherms indicate that poly-(methyl methacrylate) is adsorbed onto silicon in significantly greater amounts than poly(styrene) from both benzene and trichloroethylene. The adsorption phenomena are explained on the basis of the polymer-medium interactions, the chemical structure of the polymers, and the surface chemistry of the silicon powder. In the case of the copolymer, the poly(methyl methacrylate) segments act as anchors to the silicon surface. The poly(styrene) segments project out into the medium and impart the necessary stabilizing action against particle agglomeration. Adsorption of poly(methyl methacrylate) and copolymer effectively controls particle agglomeration and enables the preparation of nonaqueous slips of silicon having stability similar to that which can be achieved in water. Control of particle agglomeration with this steric stabilization strategy results in compacts with improved particle packing as observed through sediment volume analysis.  相似文献   

13.
Alkali-soluble random copolymer (ASR), poly(styrene/α-methylstyrene/acrylic acid) [Mn: 4,300; acid number: 190], was used as a polymeric emulsifier in the emulsion polymerization of styrene and methyl methacrylate, respectively. ASR containing a large number of carboxyl groups could form aggregates like micelles, and the solubilization ability of the aggregates was dependent on the neutralization degree of ASR. The polystyrene latexes prepared using ASR showed the small particle size (ca. 40 nm) and monodispersed particle size distribution. On the other hand, the particle size distribution of poly(methyl methacrylate) latexes became broader as the neutralization of ASR increased. This could be explained by the effects of water solubility of the monomer and the neutralization degree of ASR on particle formation. Thin layer chromatography/flame ionization detector analysis confirmed that the grafting reaction of polystyrene to ASR occurred during emulsion polymerization. The ζ potentials of final latexes showed high values due to ASR that was adsorbed and grafted on the surface of the latex particle. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 543–550, 1998  相似文献   

14.
Nonswellable and swellable poly(ethyleneglycol dimethacrylate)-based microbeads that could react directly with the biological molecules were produced by a suspension polymerization procedure. For this purpose, ethyleneglycol dimethacrylate (EGDMA) was copolymerized with glycidyl methacrylate (GMA) in an aqueous suspension medium. Benzoyl peroxide and poly(vinyl alcohol) were used as the initiator and the stabilizer, respectively. The copolymerization provided nonswellable, tranparent, and spherical copolymer microbeads in the size range of 100–300 μm. On the other hand, swellable copolymer microbeads in the aqueous medium were obtained by using toluene as a diluent in the same copolymerization recipe. In a separate group of polymerizations, styrene (St) monomer was also included within the monomer phase to regulate the hydrophobicity of resulting microbeads. Nonswellable and swellable poly-(EGDMA-St-GMA) microbeads were obtained by changing the type and concentration of the ingredients within the monomer phase. The effects of glycidyl methacrylate, styrene, and toluene concentrations on the microbead yield, the average size, and the swellability of microbeads were investigated. In the second part of the study, the interaction of produced microbeads with a selected enzyme (i.e., chymotrypsin) was investigated. The most stable chymotrypsin immobilization was achieved with the swellable poly(EGDMA)-based microbeads including styrene. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1319–1334, 1998  相似文献   

15.
Monodisperse poly[styrene‐co‐glycidyl methacrylate (GMA)] microparticles were synthesized by dispersion copolymerization in a water–ethanol medium. The effects of various polymerization parameters on the particle size and size distribution of the dispersion copolymerization were investigated. The dispersion of polymer particles decreased when the GMA was added if the polystyrene homopolymer particles were polydispersed. The GMA acted as a comonomer as well as a costabilizer in the dispersion copolymerization of styrene with GMA. The solvency of the monomer increased with the concentration of GMA in the polymerization medium because GMA has a greater hydrophilicity than styrene, resulting in a large particle size and a slow polymerization rate. From an HCl–dioxane analysis of the poly(styrene‐co‐GMA) microparticles, great amounts of epoxy groups were detected after the completion of dispersion copolymerization. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1206–1212, 2001  相似文献   

16.
Novel Microcellular Ceramics from a Silicone Resin   总被引:5,自引:1,他引:5  
Microcellular silicon oxycarbide open cell ceramic foams were fabricated from a silicone resin. Microcellular foams, with a cell size ranging from ∼1–80 μm, were fabricated using poly(methyl methacrylate) microbeads as sacrificial templates. The compression strength of the foams decreased with increasing cell size.  相似文献   

17.
Free radical dispersion polymerization of methyl methacrylate (MMA) was carried out in supercritical carbon dioxide (scCO2) using poly{(heptadecafluorodecyl acrylate)‐co‐3‐[tris(trimethylsilyloxy)silyl]propyl methacrylate} (p(HDFDA‐co‐SiMA)) as stabilizer. Dry, fine powdered spherical poly(methyl methacrylate) (pMMA) particles with well‐defined sizes were produced. The resulting high yield of spherical and relatively uniform micron‐size pMMA particles was formed utilizing various amounts of p(HDFDA‐co‐SiMA) random copolymer. The particle diameter was shown to be dependent on the weight percent of the stabilizer added to the system. The effects of varying the concentration of stabilizer (1–7 wt%), reaction time (4–12 h) and pressure (15–35 MPa) upon the polymerization yield, molar mass and morphology of pMMA were investigated. Copyright © 2005 Society of Chemical Industry  相似文献   

18.
Polyurethane macroiniferter/poly(methyl methacrylate) block copolymer dispersions with inverse core‐shell morphologies were obtained from 1,1,2,2,‐tetraphenylethane‐1,2‐diol, dimethylol propionic acid, 4,4′‐diphenylmethane diisocyanate, and poly(propylene glycol) via a living radical mechanism. Molecular weight, particle size and dispersion viscosity, and thermal, mechanical, and dynamic mechanical properties of the dispersion cast films are reported as a function of copolymerization time. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1971–1975, 2003  相似文献   

19.
The mechanism of seeded dispersion polymerization of methyl methacrylate (MMA) was investigated by employing submicron fluorescent polymer particles as seed. These poly(methyl methacrylate) latex particles, containing fluorescent material, were synthesized by a two‐step miniemulsion polymerization process and then applied in the seeded dispersion polymerization of MMA. The seed particles were located by tracking the fluorescent signal in the micron‐size final particles. The analysis of the final particles showed that most of them contained more than two seed particles. On average, there were 3.7 seed particles in each final particle as obtained under the given conditions of the seeded dispersion polymerization. The location of the seed within the particles being well‐separated from each other was considered to indicate that the aggregation of the particles did not occur immediately, but took place after some particle growth had first taken place. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Hybrid particles of polyurethane (PU) containing a number of small poly(methyl methacrylate) (PMMA) nanoparticles inside were prepared using glycidyl methacrylate (GMA) monomer as a linker between PU and PMMA; the resulting polymers were poly (urethane‐glycidyl methacrylate‐methyl methacrylate) (PUGM). It was found that the average particle size (Dp) of the PU particles decreased by the inclusion of PMMA particles possibly owing to the low‐solution viscosity of PU. However, Dp of the PUGM hybrid particles increased with increasing the number of covalent bonds between PMMA and PU, which might be due to decreasing the amount of ionic groups per PU chain. Subsequently, the tensile properties of the films made of the PUGM hybrid particles were investigated. It was observed that the modulus of the PU films increased upon the addition of PMMA particle because of a filler effect. In addition, it was seen that the modulus of PUGM hybrid films increased further with increasing the number of covalent bonds. This was attributed to “restricted mobility” of PU chains anchored to the PMMA particles. It was also observed that the tensile strength changed only slightly for PUGM particles, suggesting that the PU matrix was probably responsible for the necking behavior of the films. The elongation of the samples was found to depend on both the presence of covalent bonds between the PMMA particles and PU matrix and the reduced mobility of the PU chains anchored to PMMA particles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号