首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Lithium‐ion, sodium‐ion, and potassium‐ion batteries have captured tremendous attention in power supplies for various electric vehicles and portable electronic devices. However, their practical applications are severely limited by factors such as poor rate capability, fast capacity decay, sluggish charge storage dynamics, and low reversibility. Herein, hetero‐structured bimetallic sulfide (NiS/FeS) encapsulated in N‐doped porous carbon cubes interconnected with CNTs (Ni‐Fe‐S‐CNT) are prepared through a convenient co‐precipitation and post‐heat treatment sulfurization technique of the corresponding Prussian‐blue analogue nanocage precursor. This special 3D hierarchical structure can offer a stable interconnect and conductive network and shorten the diffusion path of ions, thereby greatly enhancing the mobility efficiency of alkali (Li, Na, K) ions in electrode materials. The Ni‐Fe‐S‐CNT nanocomposite maintains a charge capacity of 1535 mAh g?1 at 0.2 A g?1 for lithium ion batteries, 431 mAh g?1 at 0.1 A g?1 for sodium ion batteries, and 181 mAh g?1 at 0.1 A g?1 for potassium‐ion batteries, respectively. The high performance is mainly attributed to the 3D hierarchically high‐conductivity network architecture, in which the hetero‐structured FeS/NiS nanocubes provide fast Li+/Na+/K+ insertion/extraction and reduced ion diffusion paths, and the distinctive 3D networks maintain the electrical contact and guarantee the structural integrity.  相似文献   

2.
As the power-conversion efficiency (PCE) of organic–inorganic lead halide perovskite solar cells (PSCs) is approaching the theoretical maximum, the most crucial issue concerns long-term ambient stability. Here, the application of PCN-224 quantum dots (QDs) is reported, a typical Zr-based porphyrinic metal–organic framework (MOF), to enhance the ambient stability of PSCs. PCN-224 QDs with abundant Lewis-base groups (e.g., CO, C−N, CN) contribute to high-quality perovskite films with enlarged grain size and reduced defect density by interaction with under-coordinated Pb2+. Meanwhile, PCN-224 QDs enable the well-matched energy level at the perovskite/hole transport layer (HTL) interface, thereby facilitating hole extraction and transport. More importantly, PCN-224 QDs-treated HTL can capture Li+ from bis(trifluoromethanesulfonyl)imide additive, leading to the reduced aggregation and less direct contact with moisture for hygroscopic Li-TFSI. Moreover, PCN-224 QDs mitigated Li+ ion migration into the perovskite layer, thus avoiding the formation of deleterious defects. The resultant devices yield a champion PCE of 22.51%, along with substantially improved durability, including humidity, thermal and light soaking stabilities. The findings provide a new approach toward efficient and stable PSCs by applying MOF QDs.  相似文献   

3.
4.
The control of interfacial charge transfer is central to the design of photovoltaic devices. This charge transfer is strongly dependent upon the local chemical environment at each interface. In this paper we report a methodology for the fabrication of a novel nanostructured multicomponent film, employing a dual‐function supramolecular organic semiconductor to allow molecular‐level control of the local chemical composition at a nanostructured inorganic/organic semiconductor heterojunction. The multicomponent film comprises a lithium ion doped dual‐functional hole‐transporting material (Li+–DFHTM), sandwiched between a dye‐sensitized nanocrystalline TiO2 film and a mono‐functional organic hole‐transporting material (MFHTM). The DFHTM consists of a conjugated organic semiconductor with ion supporting side chains, designed to allow both electronic and ionic charge transport properties. The Li+–DFHTM layers provide a new and versatile way to control the interface electrostatics, and consequently the charge transfer, at a nanostructured dye‐sensitized inorganic/organic semiconductor heterojunction.  相似文献   

5.
When fabricating Li‐rich layered oxide cathode materials, anionic redox chemistry plays a critical role in achieving a large specific capacity. Unfortunately, the release of lattice oxygen at the surface impedes the reversibility of the anionic redox reaction, which induces a large irreversible capacity loss, inferior thermal stability, and voltage decay. Therefore, methods for improving the anionic redox constitute a major challenge for the application of high‐energy‐density Li‐rich Mn‐based cathode materials. Herein, to enhance the oxygen redox activity and reversibility in Co‐free Li‐rich Mn‐based Li1.2Mn0.6Ni0.2O2 cathode materials by using an integrated strategy of Li2SnO3 coating‐induced Sn doping and spinel phase formation during synchronous lithiation is proposed. As an Li+ conductor, a Li2SnO3 nanocoating layer protects the lattice oxygen from exposure at the surface, thereby avoiding irreversible oxidation. The synergy of the formed spinel phase and Sn dopant not only improves the anionic redox activity, reversibility, and Li+ migration rate but also decreases Li/Ni mixing. The 1% Li2SnO3‐coated Li1.2Mn0.6Ni0.2O2 delivers a capacity of more than 300 mAh g?1 with 92% Coulombic efficiency. Moreover, improved thermal stability and voltage retention are also observed. This synergic strategy may provide insights for understanding and designing new high‐performance materials with enhanced reversible anionic redox and stabilized surface lattice oxygen.  相似文献   

6.
Li‐ion hybrid capacitors (LIHCs), consisting of an energy‐type redox anode and a power‐type double‐layer cathode, are attracting significant attention due to the good combination with the advantages of conventional Li‐ion batteries and supercapacitors. However, most anodes are battery‐like materials with the sluggish kinetics of Li‐ion storage, which seriously restrict the energy storage of LIHCs at the high charge/discharge rates. Herein, vanadium nitride (VN) nanowire is demonstated to have obvious pseudocapacitive characteristic of Li‐ion storage and can get further gains in energy storage through a 3D porous architecture with the assistance of conductive reduced graphene oxide (RGO). The as‐prepared 3D VN–RGO composite exhibits the large Li‐ion storage capacity and fast charge/discharge rate within a wide working widow from 0.01–3 V (vs Li/Li+), which could potentially boost the operating potential and the energy and power densities of LIHCs. By employing such 3D VN–RGO composite and porous carbon nanorods with a high surface area of 3343 m2 g?1 as the anode and cathode, respectively, a novel LIHCs is fabricated with an ultrahigh energy density of 162 Wh kg?1 at 200 W kg?1, which also remains 64 Wh kg?1 even at a high power density of 10 kW kg?1.  相似文献   

7.
Electrochromic devices have many important commercial applications ranging from electronic paper like displays, antiglare rear‐view mirrors in cars, to energy‐saving smart windows in buildings. Monovalent ions such as H+, Li+, and Na+ are widely used as insertion ions in electrochromic devices but have serious limitations such as instability, high‐cost, and hard handling. The utilization of trivalent ions as insertion ions has been largely overlooked probably because of the strong electrostatic interactions between ions and intercalation framework and the resulted difficulties of intercalation. It is demonstrated that the trivalent ion, Al3+, can be used as efficient insertion ion by using metal oxide hosts in nanostructured form, which brings the desired fast‐switch, high‐contrast, and high‐stability as well to electrochromic devices. Differing from the usual structure degradation by repeated guest intercalation/deintercalation, the Al3+ insertion introduces strong electrostatic forces, which on some degree stabilize the crystal structure and consequently yield much enhanced performances.  相似文献   

8.
Lithium (Li) metal is regarded as the most attractive anode material for high‐energy Li batteries, but it faces unavoidable challenges—uncontrollable dendritic growth of Li and severe volume changes during Li plating and stripping. Herein, a porous carbon framework (PCF) derived from a metal–organic framework (MOF) is proposed as a dual‐phase Li storage material that enables efficient and reversible Li storage via lithiation and metallization processes. Li is electrochemically stored in the PCF upon charging to 0 V versus Li/Li+ (lithiation), making the PCF surface more lithiophilic, and then the formation of metallic Li phase can be induced spontaneously in the internal nanopores during further charging below 0 V versus Li/Li+ (metallization). Based on thermodynamic calculations and experimental studies, it is shown that atomically dispersed zinc plays an important role in facilitating Li plating and that the reversibility of Li storage is significantly improved by controlled nanostructural engineering of 3D porous nanoarchitectures to promote the uniform formation of Li. Moreover, the MOF‐derived PCF does not suffer from macroscopic volume changes during cycling. This work demonstrates that the nanostructural engineering of porous carbon structures combined with lithiophilic element coordination would be an effective approach for realizing high‐capacity, reversible Li‐metal anodes.  相似文献   

9.
Exploring a universal strategy to implement the precise control of 2D nanomaterials in size and layer number is a big challenge for achieving ultrafast and stable Li/Na‐ion batteries. Herein, the confined synthesis of 1–3 layered MoS2 nanocrystals into 2D Ti3C2 interlayer nanospace with the help of electrostatic attraction and subsequent cetyltrimethyl ammonium bromide (CTAB) directed growth is reported. The MoS2 nanocrystals are tightly anchored into the interlayer by 2D confinement effect and strong Mo? C covalent bond. Impressively, the disappearance of Li+ intercalated into MoS2 reduction peak is successfully observed for the first time in the experiment, showing in a typical surface‐controlled charge storage behavior. The pseudocapacitance‐dominated contribution guarantees a much faster and more stable Li/Na storage performance. As predicted, this electrode exhibits a very high Li+ storage capacity of 340 mAh g?1 even at 20 A g?1 and a long cycle life (>1000 times). It also shows an excellent Na+ storage capacity of 310 mAh g?1 at 1 A g?1 with a 1600 times high‐rate cycling. Such impressive confined synthesis strategy can be extended to the precise control of other 2D nanomaterials.  相似文献   

10.
A systematic investigation is reported into the influence of the counter cations on the optical, electrical and electroluminescent properties of polyelectrolytic conjugated polymers and of their cyclodextrin‐threaded rotaxanes. We compare conjugated polyelectrolytes with sulfonated side groups where the anionic charge is balanced by Li+, K+, Cs+, tetramethylammonium (Me4N+) and cryptate‐encapsulated potassium (K+@[2.2.2]). Narrowing (for the unthreaded analogues) and a slight red‐shift of the absorption spectra (for the rotaxanes) are found upon exchange of Li+ for larger cations, together with a blue‐shift and an efficiency enhancement of the luminescence. These effects are similar in nature to those induced by rotaxination, and are therefore assigned to a marked reduction of intermolecular interactions between the conjugated cores. Exchange of Li+ for K+, Cs+, or Me4N+ results in a higher electroluminescence external quantum efficiency (EQE) for both polyrotaxanes and unthreaded polymers. For polyrotaxane‐based devices the EQE increased approximately 7 times upon substitution of Li+ with Cs+ or Me4N+, thereby demonstrating the importance of the selection of the counter‐cations for optimizing the performance of polyelectrolytic conjugated polymers in light‐emitting devices.  相似文献   

11.
The use of lithium‐ion conductive solid electrolytes offers a promising approach to address the polysulfide shuttle and the lithium‐dendrite problems in lithium‐sulfur (Li‐S) batteries. One critical issue with the development of solid‐electrolyte Li‐S batteries is the electrode–electrolyte interfaces. Herein, a strategic approach is presented by employing a thin layer of a polymer with intrinsic nanoporosity (PIN) on a Li+‐ion conductive solid electrolyte, which significantly enhances the ionic interfaces between the electrodes and the solid electrolyte. Among the various types of Li+‐ion solid electrolytes, NASICON‐type Li1+xAlxTi2‐x(PO4)3 (LATP) offers advantages in terms of Li+‐ion conductivity, stability in ambient environment, and practical viability. However, LATP is susceptible to reaction with both the Li‐metal anode and polysulfides in Li‐S batteries due to the presence of easily reducible Ti4+ ions in it. The coating with a thin layer of PIN presented in this study overcomes the above issues. At the negative‐electrode side, the PIN layer prevents the direct contact of Li‐metal with the LATP solid electrolyte, circumventing the reduction of LATP by Li metal. At the positive electrode side, the PIN layer prevents the migration of polysulfides to the surface of LATP, preventing the reduction of LATP by polysulfides.  相似文献   

12.
A triboelectric nanogenerators (TENG) are of great interest as emerging power harvesters because of their simple device architecture with unprecedented high efficiency. Despite the substantial development of new constituent materials and device architectures, a TENG with a switchable surface on a single device, which allows for facile control of the triboelectric output performance, remains a challenge. Here, a supramolecular route for fabricating a novel TENG based on an alkali‐metal‐bound porous film, where the alkali metal ions are readily switched among one another is demonstrated. The soft nanoporous TENG contains numerous SO3? groups on the surface of nanopores prepared from the supramolecular assembly of sulfonic‐acid‐terminated polystyrene and poly(2‐vinylpyridine) (P2VP), followed by soft etching of P2VP. Selective binding of alkali metal ions, including Li+, Na+, K+, and Cs+, with SO3? groups enables the development of mechanically robust alkali‐metal‐ion‐decorated TENGs. The triboelectric output performance of the devices strongly depends on the alkali metal ion species, and the output power ranges from 11.5 to 256.5 µW. This wide‐range triboelectric tuning can be achieved simply by a conventional ion exchange process in a reversible manner, thereby allowing reversible control of the output performance in a single device platform.  相似文献   

13.
Efficient energy storage systems impact profoundly the renewable energy future. The performance of current electrical energy storage technologies falls well short of requirements for using electrical energy efficiently in transportation, commercial, and residential applications. This paper explores the possibility by using transition‐metal‐based complexes as active materials in a Li‐ion battery full cell that synergizes the concept of both lithium‐ion batteries and redox flow batteries. A cathode made from transition metal complex, [Fe(bpy)3](BF4)2, exhibits high discharge voltage approaching 4 V (vs Li/Li+). When coupled with a Li4Ti5O12 anode, the Li‐ion full battery exhibits a cell voltage exceeding 2.2 V and decent cycling efficiencies with Coulombic efficiency and energy/voltage efficiencies above 99% and 92%/93%, respectively. Such a Li‐ion battery full cell offers distinct features such as low cost and flexibility in molecular structure design. The result reveals a generic design route toward iron‐based complexes as cathode materials with good electrochemical performances.  相似文献   

14.
In recent years, organic battery cathode materials have emerged as an attractive alternative to metal oxide–based cathodes. Organic redox polymers that can be reversibly oxidized are particularly promising. A drawback, however, often is their limited cycling stability and rate performance in a high voltage range of more than 3.4 V versus Li/Li+. Herein, a conjugated copolymer design with phenothiazine as a redox‐active group and a bithiophene co‐monomer is presented, enabling ultra‐high rate capability and cycling stability. After 30 000 cycles at a 100C rate, >97% of the initial capacity is retained. The composite electrodes feature defined discharge potentials at 3.6 V versus Li/Li+ due to the presence of separated phenothiazine redox centers. The semiconducting nature of the polymer allows for fast charge transport in the composite electrode at a high mass loading of 60 wt%. A comparison with three structurally related polymers demonstrates that changing the size, amount, or nature of the side groups leads to a reduced cell performance. This conjugated copolymer design can be used in the development of advanced redox polymers for batteries.  相似文献   

15.
Solid-state polymer electrolytes (SPEs) with flexibility, easy processability, and low cost have been regarded as promising alternatives for conventional liquid electrolytes in next-generation high-safety lithium metal batteries. However, SPEs generally suffer poor strength to block Li dendrite growth during the charge/discharge process, which severely limits their wide practical applications. Here, a rational design of 3D cross-linked network asymmetric SPE modified with a metal–organic framework (MOF) layer on one side is proposed and prepared through an in-situ polymerization process. In such unique asymmetric SPEs, the nanoscale MOF layer acts as a shield that effectively suppresses the growth of Li dendrites and regulates the uniform Li+ transport, and the polymer electrolyte can be scattered in the whole cell to endow the smooth transmission of Li+. As a result, the asymmetric SPE exhibits high ionic conductivity, wide electrochemical window, high thermal stability and safety, which endows the Li/Li symmetrical cell with outstanding cyclic stability (operate well over 800 h at a current density of 0.1 mA cm−2 for the capacity of 0.1 mAh cm−2).  相似文献   

16.
Voltage control of magnetism through electric field‐induced oxygen motion (magneto‐ionics) could represent a significant breakthrough in the pursuit for new strategies to enhance energy efficiency in magnetically actuated devices. Boosting the induced changes in magnetization, magneto‐ionic rates and cyclability continue to be key challenges to turn magneto‐ionics into real applications. Here, it is demonstrated that room‐temperature magneto‐ionic effects in electrolyte‐gated paramagnetic Co3O4 films can be largely increased both in terms of generated magnetization (6 times larger) and speed (35 times faster) if the electric field is applied using an electrochemical capacitor configuration (utilizing an underlying conducting buffer layer) instead of placing the electric contacts at the side of the semiconductor (electric‐double‐layer transistor‐like configuration). This is due to the greater uniformity and strength of the electric field in the capacitor design. These results are appealing to widen the use of ion migration in technological applications such as neuromorphic computing or iontronics in general.  相似文献   

17.
The use of sulfur in the next generation Li‐ion batteries is currently precluded by its poor cycling stability caused by irreversible Li2S formation and the dissolution of soluble polysulfides in organic electrolytes that leads to parasitic cell reactions. Here, a new C/S cathode material comprising short‐chain sulfur species (predominately S2) confined in carbonaceous subnanometer and the unique charge mechanism for the subnano‐entrapped S2 cathodes are reported. The first charge–discharge cycle of the C/S cathode in the carbonate electrolyte forms a new type of thiocarbonate‐like solid electrolyte interphase (SEI). The SEI coated C/S cathode stably delivers ≈600 mAh g?1 capacity over 4020 cycles (0.0014% loss cycle?1) at ≈100% Coulombic efficiency. Extensive X‐ray photoelectron spectroscopy analysis of the discharged cathodes shows a new type of S2 species and a new carbide‐like species simultaneously, and both peaks disappear upon charging. These data suggest a new sulfur redox mechanism involving a separated Li+/S2? ion couple that precludes Li2S compound formation and prevents the dissolution of soluble sulfur anions. This new charge/discharge process leads to remarkable cycling stability and reversibility.  相似文献   

18.
Lithium (Li) metal with high theoretical capacity and the lowest electrochemical potential has been proposed as the ideal anode for high‐energy‐density rechargeable battery systems. However, the practical commercialization of Li metal anodes is precluded by a short lifespan and safety problems caused by their intrinsically high reductivity, infinite volume change, and uncontrollable dendrite growth during deposition and dissolution processes. Plenty of strategies have been introduced to solve the above‐mentioned problems. Among these, controlling Li+ flux plays a vital role to directly influence the plating and stripping process. In this work, the fundamental effect of Li+ flux distribution on Li nucleation and early dendrite growth is discussed. Then, recent strategies of controlling Li+ flux to suppress dendrite formation and growth through materials design are summarized, including homogenizing Li+ flux, localizing Li+ flux, and guiding gradient Li+ distribution. Finally, underexplored materials are proposed and explored to control Li+ flux and further directions for dendrite‐free Li anodes. It is expected that this progress report will help to deepen the understanding of Li+ flow tuning and morphology control of Li anodes and eventually facilitate the practical application of Li metal batteries.  相似文献   

19.
Concerning the safety aspects of Li+ ion batteries, an epoxy-reinforced thin ceramic film (ERTCF) is prepared by firing and sintering a slurry-casted composite powder film. The ERTCF is composed of Li+ ion conduction channels and is made of high amounts of sintered ceramic Li1+xTi2-xAlx(PO4)3 (LATP) and epoxy polymer with enhanced mechanical properties for solid-state batteries. The 2D and 3D characterizations are conducted not only for showing continuous Li+ ion channels thorough LATP ceramic channels with over 10−4 S cm−1 of ionic conductivity but also to investigate small amounts of epoxy polymer with enhanced mechanical properties. Solid-state Li+ ion cells are fabricated using the ERTCF and they show initial charge–discharge capacities of 139/133 mAh g−1. Furthermore, the scope of the ERTCF is expanded to high-voltage (>8 V) solid-state Li+ ion batteries through a bipolar stacked cell design. Hence, it is expected that the present investigation will significantly contribute in the preparation of the next generation reinforced thin ceramic film electrolytes for high-voltage solid-state batteries.  相似文献   

20.
Ru(4,4‐dicarboxylic acid‐2,2′‐bipyridine) (4,4′‐bis(2‐(4‐(1,4,7,10‐tetraoxyundecyl)phenyl)ethenyl)‐2,2′‐bipyridine) (NCS)2, a new high molar extinction coefficient ion‐coordinating ruthenium sensitizer was synthesized and characterized using 1H NMR, Fourier transform IR (FTIR), and UV/vis spectroscopies and cyclic voltammetry. Using this sensitizer in combination with a nonvolatile organic‐solvent‐based electrolyte, we obtain a photovoltaic efficiency of 8.4 % under standard global AM 1.5 sunlight. These devices exhibit excellent stability when subjected to continuous thermal stress at 80 °C or light soaking at 60 °C for 1000 h. An electrochemical impedance spectroscopy study revealed that device stability is maintained by stabilizing the TiO2/dye/electrolyte and Pt/electrolyte interface during the aging process. The influence of Li+ present in the electrolyte on the device photovoltaic parameters was studied, and the FTIR spectral and photovoltage transient study showed that Li+ coordinates to the triethyleneoxide methylether side chains on the K60 sensitizer molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号