首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Ordering of semiconducting polymers in thin films from the nano to microscale is strongly correlated with charge transport properties as well as organic field‐effect transistor performance. This paper reports a method to control nano to microscale ordering of poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)) thin films by precisely regulating the solidification rate from the metastable state just before crystallization. The proposed simple but effective approach, kinetically controlled crystallization, achieves optimized P(NDI2OD‐T2) films with large polymer domains, long range ordered fibrillar structures, and molecular orientation preferable for electron transport leading to dramatic morphological changes in both polymer domain sizes at the micrometer scale and molecular packing structures at nanoscales. Structural changes significantly increase electron mobilities up to 3.43 ± 0.39 cm2 V?1 s?1 with high reliability, almost two orders of enhancement compared with devices from naturally dried films. Small contact resistance is also obtained for electron injection (0.13 MΩ cm), low activation energy (62.51 meV), and narrow density of states distribution for electron transport in optimized thin films. It is believed that this study offers important insight into the crystallization of conjugated polymers that can be broadly applied to optimize the morphology of semiconducting polymer films for solution processed organic electronic devices.  相似文献   

2.
The semiconductor–electrode interface impacts the function and the performance of (opto)electronic devices. For printed organic electronics the electrode surface is not atomically clean leading to weakly interacting interfaces. As a result, solution‐processed organic ultrathin films on electrodes typically form islands due to dewetting. It has therefore been utterly difficult to achieve homogenous ultrathin conjugated polymer films. This has made the investigation of the correct energetics of the conjugated polymer–electrode interface impossible. Also, this has hampered the development of devices including ultrathin conjugated polymer layers. Here, Langmuir–Shäfer‐manufactured homogenous mono‐ and multilayers of semiconducting polymers on metal electrodes are reported and the energy level bending using photoelectron spectroscopy is tracked. The amorphous films display an abrupt energy level bending that does not extend beyond the first monolayer. These findings provide new insights of the energetics of the polymer–electrode interface and opens up for new high‐performing devices based on ultrathin semiconducting polymers.  相似文献   

3.
While molecular ordering via crystallization is responsible for many of the impressive optoelectronic properties of thin‐film semiconducting polymer devices, crystalline morphology and its crucial influence on performance remains poorly controlled and is usually studied as a passive result of the conditions imposed by film deposition parameters. A method for systematic control over crystalline morphology in conjugated polymer thin films by very precise control of nucleation density and crystal growth conditions is presented. A precast poly(3‐hexylthiophene) film is first swollen into a solution‐like state in well‐defined vapor pressures of a good solvent, while the physical state of the polymer chains is monitored using in situ UV–vis spectroscopy and ellipsometry. Nucleation density is selected by a controlled deswelling of the film or by a self‐seeding approach using undissolved crystalline aggregates that remain in the swollen film. Nucleation densities ranging successively over many orders of magnitude are achieved, extending into the regime of spherulitic domains 10 to 100 μm in diameter, a length scale highly relevant for typical probes of macroscopic charge transport such as field‐effect transistors. This method is presented as a tool for future systematic study of the structure‐function relation in semicrystalline semiconducting polymers in a broad range of applications.  相似文献   

4.
Ionic liquids are increasingly employed as dielectrics to generate high charge densities and enable low‐voltage operation with organic semiconductors. However, effects on structure and morphology of the active material are not fully known, particularly for permeable semiconductors such as conjugated polymers, in which ions from the ionic liquid can enter and electrochemically dope the semicrystalline film. To understand when ions enter, where they go, and how they affect the film, thin films of the archetypal semiconducting polymer, poly(3‐hexylthiophene), are electrochemically doped with 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide, the archetypal ionic liquid. High‐resolution, ex situ X‐ray diffraction measurements and complete pole figures reveal changes with applied voltage, cycling, and frequency in lattice spacing, crystallite orientation, and crystallinity in the bulk and at the buried interface. Dopant ions penetrate the film and enter the crystallites at sufficiently high voltages and low frequencies. Upon infiltrating crystallites, ions permanently expand lamellar stacking and contract pi‐stacking. Cycling amplifies these effects, but higher frequencies mitigate the expansion of bulk crystallites as ions are hindered from entering crystallites. This mechanistic understanding of the structural effects of ion penetration will help develop models of the frequency and voltage impedance response of electrochemically doped conjugated polymers and advance electronic applications.  相似文献   

5.
Micro‐ and nanostructuring of conjugated polymers are of critical importance in the fabrication of molecular electronic devices as well as photonic and bandgap materials. The present report delineates the single‐step self‐organization of highly ordered structures of functionalized poly(p‐phenylene)s without the aid of either a controlled environment or expensive fabrication methodologies. Microporous films of these polymers, with a honeycomb pattern, were prepared by direct spreading of the dilute polymer solution on various substrates, such as glass, quartz, silicon wafer, indium tin oxide, gold‐coated mica, and water, under ambient conditions. The polymeric film obtained from C12PPPOH comprises highly periodic, defect‐free structures with blue‐light‐emitting properties. It is expected that such microstructured, conjugated polymeric films will have interesting applications in photonic and optoelectronic devices. The ability of the polymer to template the facile micropatterning of nanomaterials gives rise to hybrid films with very good spatial dispersion of the carbon nanotubes.  相似文献   

6.
Recently, 2D monolayer films of conjugated polymers have gained increasing attention owing to the preeminence of 2D inorganic films that exhibit unique optoelectronic and mechanical properties compared to their bulk analogs. Despite numerous efforts, crystallization of semiconducting polymers into highly ordered 2D monolayer films still remains challenging. Herein, a dynamic‐template‐assisted meniscus‐guided coating is utilized to fabricate continuous, highly ordered 2D monolayer films of conjugated polymers over a centimeter scale with enhanced backbone π–π stacking. In contrast, monolayer films printed on solid substrates confer upon the 1D fiber networks strong alkyl side‐chain stacking at the expense of backbone packing. From single‐layers to multilayers, the polymer π‐stacks change from edge‐on to bimodal orientation as the film thickness reaches ≈20 nm. Spectroscopic and cyclic voltammetry analysis reveals an abrupt increase in J‐aggregation and absorption coefficient and a decrease in bandgap and highest occupied molecular orbital level until critical thickness, possibly arising from the straightened polymer backbone. This is corroborated by an abrupt increase in hole mobility with film thickness, reaching a maximum of 0.7 cm2 V?1 s?1 near the critical thickness. Finally, fabrication of chemical sensors incorporating polymer films of various thicknesses is demonstrated, and an ultrahigh sensitivity of the ≈7 nm thick ultrathin film (bilayers) to 1 ppb ammonia is shown.  相似文献   

7.
High molecular weight poly(diphenylacetylene) [PDPA] derivatives are introduced as fluorescent, soft conjugated polymers that exist in the gum state at room temperature. The gum‐like behavior of the polymers is easily modified according to the side alkyl chain length and substitution position. Long alkyl chain‐coupled PDPA derivatives provide soft and sticky gums at room temperature. Manual kneading of gum polymers produce soft films with very smooth surfaces. The gum polymers show an endothermic transition due to the melting of long alkyl chains. The X‐ray diffraction of gum polymers reveals a new signal due to the molten aliphatic chains. The gum polymers show significant viscoelastic relaxation at the melting temperature of the alkyl side chains. The dynamic thermo‐mechanical analysis (DTMA) of gum polymers at room temperature suggest that the meta‐substituted polymer is softer and stickier than para‐polymer. Rheological analysis suggests that the meta‐polymer has less entanglement than para‐polymer. The fluorescence emission of gum polymer is quite intense in the film and solution. The gum polymer film is readily stretched to produce a uniaxually oriented film. Stretching and subsequent relaxation of elastomer‐supported gum polymer film generate buckles perpendicular to the axis of strain. The gum polymer film accommodates the large strain without cracking and delamination.  相似文献   

8.
This study is an extended investigation on the formation of the first few monolayers of conjugated poly(fluorene)‐based polymer films prepared from solution on defined polar and nonpolar surfaces. In particular, a symmetrical A–B–A triblock copolymer consisting of poly(2‐alkylaniline) as A blocks and poly(9,9‐dialkylfluorene) as B blocks and a poly(9,9‐dialkylfluorene) homopolymer is used for this study. The dependence on drying conditions by means of solvent selection, the influence of a subsequent heat treatment, and the influence of the substrate polarity are investigated for ultrathin films as well as the transition from the first monolayers to the bulk polymer. The study is performed with optical absorption and photoluminescence spectroscopy, and atomic force microscopy to obtain complementary information of optical properties and morphological details. We find that ultrathin films (ca. 1–2 nm) prepared on mica from various solvents form highly defined, flat monolayers at the interface without lateral regularities indicating a dipole–dipole interaction between conjugated‐polymer segments and mica surface dipoles. This is further confirmed by bathochromic photoluminescence shifts observed for the ultrathin layers compared to the bulk polymer. Complementary experiments on nonpolar surfaces, highly oriented pyrolytic graphite (HOPG), show a total absence of defined flat films supporting the assumption of a dipole–dipole assisted formation on mica. For increased film thickness on mica (5 nm and more) the homopolymer does not form any regular structures or ordered layers on top of the monolayer. In contrast, the triblock copolymer, shorter in length, revealed a tendency to form a less‐defined layer‐type growth (3–3.5 nm thick) above the monolayer that was of higher order for higher‐boiling‐point solvents, indicating that the polymers are found in a different conformation. Moreover, one finds that some solvents that show partial immiscibility with the polymer strongly alter the formation of the film. The observations made for the two different types of polymers allow for an assignment of film‐formation driving forces to individual polymer segments and allow for the formulation of a growth model that explains the observed results and indicates the importance of appropriate substrate selection for organic electronic/optoelectronic devices.  相似文献   

9.
Temperature‐dependent (80–350 K) charge transport in polymer semiconductor thin films is studied in parallel with in situ X‐ray structural characterization at equivalent temperatures. The study is conducted on a pair of isoindigo‐based polymers containing the same π‐conjugated backbone with different side chains: one with siloxane‐terminated side chains (PII2T‐Si) and the other with branched alkyl‐terminated side chains (PII2T‐Ref). The different chemical moiety in the side chain results in a completely different film morphology. PII2T‐Si films show domains of both edge‐on and face‐on orientations (bimodal orientation) while PII2T‐Ref films show domains of edge‐on orientation (unimodal orientation). Electrical transport properties of this pair of polymers are also distinctive, especially at high temperatures (>230 K). Smaller activation energy (E A) and larger pre‐exponential factor (μ 0) in the mobility‐temperature Arrhenius relation are obtained for PII2T‐Si films when compared to those for PII2T‐Ref films. The results indicate that the more effective transport pathway is formed for PII2T‐Si films than for the other, despite the bimodally oriented film structure. The closer π–π packing distance, the longer coherence length of the molecular ordering, and the smaller disorder of the transport energy states for PII2T‐Si films altogether support the conduction to occur more effectively through a system with both edge‐on and face on orientations of the conjugated molecules. Reminding the 3D nature of conduction in polymer semiconductor, our results suggest that the engineering rules for advanced polymer semiconductors should not simply focus on obtaining films with conjugated backbone in edge‐on orientation only. Instead, the engineering should also encounter the contribution of the inevitable off‐directional transport process to attain effective transport from polymer thin films.  相似文献   

10.
Three acceptor–acceptor (A–A) type conjugated polymers based on isoindigo and naphthalene diimide/perylene diimide are designed and synthesized to study the effects of building blocks and alkyl chains on the polymer properties and performance of all‐polymer photoresponse devices. Variation of the building blocks and alkyl chains can influence the thermal, optical, and electrochemical properties of the polymers, as indicated by thermogravimetric analysis, differential scanning calorimetry, UV–vis, cyclic voltammetry, and density functional theory calculations. Based on the A–A type conjugated polymers, the most efficient all‐polymer photovoltaic cells are achieved with an efficiency of 2.68%, and the first all‐polymer photodetectors are constructed with high responsivity (0.12 A W?1) and detectivity (1.2 × 1012 Jones), comparable to those of the best fullerene based organic photodetectors and inorganic photodetectors. Photoluminescence spectra, charge transport properties, and morphology of blend films are investigated to elucidate the influence of polymeric structures on device performances. This contribution demonstrates a strategy of systematically tuning the polymeric structures to achieve high performance all‐polymer photoresponse devices.  相似文献   

11.
To impart high stretchability to semiconducting polymers, researchers have used a photocrosslinking approach based on the nitrene chemistry of an azide-incorporated molecular additive. However, understanding of the molecular design of azide crosslinkers with respect to their effects on the electrical and mechanical properties of semiconducting polymer thin films is lacking. In this study, the effects of an azide photocrosslinker's molecular length and structure on the microstructural, electrical features, and stretchability of photocrosslinked conjugated polymer films is investigated. For a systematic comparison, a series of nitrene-induced photocrosslinkers (n-NIPSs) with different numbers of ethylene glycol repeating units (n = 1, 4, 8, 13) that bridge two tetrafluoro-aryl azide end groups is synthesized. Two semicrystalline conjugated polymers and two nearly amorphous conjugated polymers are co-processed with n-NIPSs and crosslinked by brief exposure to UV light. It is found that, among the synthesized n-NIPSs, the shortest one (1-NIPS) is the most efficient in improving the stretchability of crosslinked indacenodithiophene-benzothiadiazole films and that the improvement is achieved only with nearly amorphous polymers, not with semicrystalline conjugated polymers. On the basis of systematic studies, it is suggested that crosslinking density in amorphous regions is important in improving thin film stretchability.  相似文献   

12.
Optoelectronic properties, supramolecular assemblies, and morphology variation of polymeric semiconductors are governed by six fundamental chemical features. These features are molecular weight, bond length alternation (BLA), planarity, aromatic resonance energy, substituents, and intermolecular interactions. Of these features the specific role of BLA in determining the performance of a polymeric semiconductor in practical technological applications is so far unknown. This study investigates this question and reports the novel finding that the optoelectronic, microscopic (supramolecular packing), and macroscopic (morphology variation and device performance) properties of model semiconducting polymers depend on the conjugated polymer backbone enlargement, which is directly related to the BLA. Extensive studies are performed in both single‐component polymer films and their blends with fullerene derivatives. Understanding the specific structure‐properties relations will lead to significant advancement in the area of organic electronics, since it will set new design rules toward further optimization of polymer chemical structures to enhance the device performances.  相似文献   

13.
The problem of batch‐to‐batch variation of electronic properties and purity of conjugated polymers used as electron donor and photon harvesting materials in organic solar cells is addressed. A simple method is developed for rapid analysis of electronic quality of polymer‐based materials. It is shown that appearance of impurities capable of charge trapping changes electrophysical properties of conjugated polymers. In particular, a clear correlation between the effective relaxation time τeff and relative photovoltaic performance (η/ηmax) is revealed for samples of poly(3‐hexylthiophene) intentionally polluted with a palladium catalyst. This dependence is also valid for all other investigated samples of conjugated polymers. Therefore, fast impedance measurements at three different frequencies allow one to draw conclusions about the purity of the analyzed polymer sample and even estimate its photovoltaic performance. The developed method might find extensive applications as a simple tool for product quality control in the laboratory and industrial‐scale production of conjugated polymers for electronic applications.  相似文献   

14.
The one‐step preparation of highly anisotropic polymer semiconductor thin films directly from solution is demonstrated. The conjugated polymer poly(3‐hexylthiophene) (P3HT) as well as P3HT:fullerene bulk–heterojunction blends can be spin‐coated from a mixture of the crystallizable solvent 1,3,5‐trichlorobenzene (TCB) and a second carrier solvent such as chlorobenzene. Solidification is initiated by growth of macroscopic TCB spherulites followed by epitaxial crystallization of P3HT on TCB crystals. Subsequent sublimation of TCB leaves behind a replica of the original TCB spherulites. Thus, highly ordered thin films are obtained, which feature square‐centimeter‐sized domains that are composed of one spherulite‐like structure each. A combination of optical microscopy and polarized photoluminescence spectroscopy reveals radial alignment of the polymer backbone in case of P3HT, whereas P3HT:fullerene blends display a tangential orientation with respect to the center of spherulite‐like structures. Moreover, grazing‐incidence wide‐angle X‐ray scattering reveals an increased relative degree of crystallinity and predominantly flat‐on conformation of P3HT crystallites in the blend. The use of other processing methods such as dip‐coating is also feasible and offers uniaxial orientation of the macromolecule. Finally, the applicability of this method to a variety of other semi‐crystalline conjugated polymer systems is established. Those include other poly(3‐alkylthiophene)s, two polyfluorenes, the low band‐gap polymer PCPDTBT, a diketopyrrolopyrrole (DPP) small molecule as well as a number of polymer:fullerene and polymer:polymer blends.  相似文献   

15.
All‐conjugated block copolymers bring together hole‐ and electron‐conductive polymers and can be used as the active layer of solution‐processed photovoltaic devices, but it remains unclear how molecular structure, morphology, and electronic properties influence performance. Here, the role of the chemical linker is investigated through analysis of two donor–linker–acceptor block copolymers that differ in the chemistry of the linking group. Device studies show that power conversion efficiencies differ by a factor of 40 between the two polymers, and ultrafast transient absorption measurements reveal charge separation only in block copolymers that contain a wide bandgap monomer at the donor–acceptor interface. Optical measurements reveal the formation of a low‐energy excited state when donor and acceptor blocks are directly linked without this wide bandgap monomer. For both samples studied, it is found that the rate of charge recombination in these systems is faster than in poly­mer–polymer and polymer–fullerene blends. This work demonstrates that the linking group chemistry influences charge separation in all‐conjugated block copolymer systems, and further improvement of photovoltaic performance may be possible through optimization of the linking group. These results also suggest that all‐conjugated block copolymers can be used as model systems for the donor–acceptor interface in bulk heterojunction blends.  相似文献   

16.
Semiconducting conjugated polymers with photoswitching behavior are highly demanded for field‐effect transistors (FETs) with tunable electronic properties. Herein a new design strategy is established for photoresponsive conjugated polymers by incorporating photochromic units (azobenzene) into the flexible side alkyl chains. It is shown that azobenzene groups in the side chains of the DPP (diketopyrrolopyrrole)‐quaterthiophene polymer ( PDAZO ) can undergo trans/cis photoisomerization in fully reversible and fast manner. Optically tunable FETs with bistable states are successfully fabricated with thin films of PDAZO . The drain‐source currents are reduced by 80.1% after UV light irradiation for ≈28 s, which are easily restored after further visible light irradiation for ≈33 s. Such fast optically tunable FETs are not reported before. Moreover, such current photomodulation can be implemented for multiple light irradiation cycles with good photofatigue resistance. Additionally, thin film charge mobility of PDAZO can be reversibly modulated by alternating UV and visible light irradiations. On the basis of theoretical calculations and GIWAXS data, it is hypothesized that the dipole moment and configuration changes associated with the trans‐/cis‐photoisomerization of azobenzene groups in PDAZO can affect the respective intra‐chain and inter‐chain charge transporting, which is responsible for the optically tunable behavior for FETs with thin films of PDAZO .  相似文献   

17.
The synthesis of two cyan color (blue and green emission) displaying high molecular weight 2,6‐bis(pyrazolyl)pyridine‐co‐octylated phenylethynyl conjugated polymers (CPs) is presented. The conjugated polymers are solution‐processed to prepare spin coated thin films and self‐assembled nano/microscale spheres, exhibiting cyan color under UV. Additionally, the metal coordinating ability of the 2,6‐bis(pyrazolyl)pyridine available on the surface of the CP films and spheres is exploited to prepare red emitting Eu(III) metal ion containing conjugated polymer (MCCP) layer. The fabricated hybrid (CP/MCCP) films and spheres exhibit bright white‐light under UV exposure. The Commission Internationale de l'Eclairage (CIE) coordinates are found to be (x = 0.33, y = 0.37) for hybrid films and (x = 0.30, y = 0.35) for hybrid spheres. These values are almost close to the designated CIE coordinates for ideal white‐light color (x = 0.33, y = 0.33). This easy and efficient fabrication technique to generate white‐color displaying films and nano/microspheres signify an important method in bottom‐up nanotechnology of conjugated polymer based hybrid solid state assemblies.  相似文献   

18.
Conjugated polymers are attracting worldwide attention due to their potential for use as the active layer in advanced electronic, optoelectronic, and energy harvesting applications, and their cost‐effective and low thermal budget processing traits. As the technologies based on these materials develop, new and more sensitive characterization techniques are needed. Recent progress on the use of spectroscopic ellipsometry as a highly sensitive and non‐invasive method to obtain fundamental information about conjugated polymer films is reviewed. After a brief introduction to the practical details of the technique, the use of ellipsometry to determine optical parameters that provide insight into film morphology is described, including physical phase and molecular orientation, and resulting electronic structure. The characterization of layered systems and the use of in‐situ ellipsometry as a means to gain understanding of the kinetics that occur during film deposition and post‐deposition thermal and solvent vapor treatment is also discussed.  相似文献   

19.
Here, it is shown how carrier recombination through charge transfer excitons between conjugated polymers and fullerene molecules is mainly controlled by the intrachain conformation of the polymer, and to a limited extent by the mesoscopic morphology of the blend. This experimental result is obtained by combining near‐infrared photoluminescence spectroscopy and transmission electron microscopy, which are sensitive to charge transfer exciton emission and morphology, respectively. The photoluminescence intensity of the charge transfer exciton is correlated to the degree of intrachain order of the polymer, highlighting an important aspect for understanding and limiting carrier recombination in organic photovoltaics.  相似文献   

20.
We have shown recently that the use of high‐aspect‐ratio inorganic nanorods in conjunction with conjugated polymers is a route to obtaining efficient solar cells processed from solution. Here, we demonstrate that the use of binary solvent mixtures in which one of the components is a ligand for the nanocrystals is effective in controlling the dispersion of nanocrystals in a polymer. By varying the concentration of the solvent mixture, phase separation between the nanocrystal and polymer could be tuned from micrometer scale to nanometer scale. In addition, we can achieve nanocrystal surfaces that are free of surfactant through the use of weak binding ligands that can be removed through heating. When combined, the control of film morphology together with surfactant removal result in nanorod–polymer blend photovoltaic cells with a high external quantum efficiency of 59 % under 0.1 mW cm–2 illumination at 450 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号