首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In order to understand the effect of slag composition on foaming in the smelting reduction process, slag foaming was quantitatively studied for CaO–SiO2–FeO slags in the temperature ranging 1250–1400 °C. It was found that slag foaming could be characterized by a foaming index Σ which is equal to the retention or travelling time of the gas in the slag and by the foam life. The effects of P2O5, S, MgO and CaF2 on foaming were studied. As expected slag foaming increased with increasing viscosity and decreasing surface tension. The results were extrapolated to bath smelting process to predict the foam height. Slag foaming heights as high as 3–5 meters are predicted for a typical operation.  相似文献   

2.
Slag foaming in bath smelting   总被引:5,自引:0,他引:5  
Slag foaming measurements in terms of the foaming index (∑) were conducted on bath smelting-type slags (CaO-SiO2-FeO, CaO-SiO2-MgO-Al2O3-FeO) at 1773 K. It was found that the slag foam stability decreases with increasing FeO (FeO > 2 pct) content and basicity. For the slag system (CaO-SiO2-FeO), no stable foam was observed at very low FeO content (<2 pct). As pct FeO increases, the slag foaming index goes through a maximum and then decreases; a similar phenomenon was observed for CaO-SiO2-NiO slags with respect to the NiO content. The foaming index determined from the normal small-scale experiments (3.8-cm ID diameter) were confirmed on a larger scale (9.2-cm ID diameter), indicating that the foaming index is independent of container size. Measurements were also made for the actual compositions for bath smelting slags. For these slags, the foaming index is higher than those of simple CaO-SiO2-FeO slags, because MgO and Al2O3 may increase their viscosities. The foam index is believed to be a function of the physical properties of the slag. Consequently, a dimensional analysis was performed, and a correlation was developed relating the foaming index to the viscosity, surface tension, and density of the slag. An estimation of slag foaming in actual pilot plant trials was also made from the results of the present study. Good agreement was observed between the predicted and observed foam heights and indicated coke in the slag can reduce the foam height by more than 50 pct. R. Jiang, Formerly Graduate Student, Carnegie Mellon University, is deceased.  相似文献   

3.
We investigated the effect of flux (lime) addition on the reduction behavior of iron oxide in copper slag by solid carbon at 1773 K (1500 °C). In particular, we quantified the recovery of iron by performing typical kinetic analysis and considering slag foaming, which is strongly affected by the thermophysical properties of slags. The iron oxide in the copper slag was consistently reduced by solid carbon over time. In the kinetic analysis, we determined mass transfer coefficients with and without considering slag foaming using a gas holdup factor. The mass transfer of FeO was not significantly changed by CaO addition when slag foaming was ignored, whereas the mass transfer of FeO when slag foaming was considered was at a minimum in the 20 mass pct CaO system. Iron recovery, defined as the ratio of the amount of iron clearly transferred to the base metal ingot to the initial amount of iron in the slag phase before reduction, was maximal (about 90 pct) in the 20 mass pct CaO system. Various types of solid compounds, including Mg2SiO4 and Ca2SiO4, were precipitated in slags during the FeO reduction process, and these compounds strongly affected the reduction kinetics of FeO as well as iron recovery. Iron recovery was the greatest in the 20 mass pct CaO system because no solid compounds formed in this system, resulting in a highly fluid slag. This fluid slag allowed iron droplets to fall rapidly with high terminal velocity to the bottom of the crucible. A linear relationship between the mass transfer coefficient of FeO considering slag foaming and foam stability was obtained, from which we concluded that the mass transfer of FeO in slag was effectively promoted not only by gas evolution due to reduction reactions but also by foamy slag containing solid compounds. However, the reduced iron droplets were finely dispersed in foamy and viscous slags, making actual iron recovery a challenge.  相似文献   

4.
Blast furnaces are encountering high Alumina (Al2O3 > 25 pct) in the final slag due to the charging of low-grade ores. To study the viscosity behavior of such high alumina slags, synthetic slags are prepared in the laboratory scale by maintaining a chemical composition of Al2O3 (25 to 30 wt pct) CaO/SiO2 ratio (0.8 to 1.6) and MgO (8 to 16 wt pct). A chemical thermodynamic software FactSage 7.0 is used to predict liquidus temperature and viscosity of the above slags. Experimental viscosity measurements are performed above the liquidus temperature in the range of 1748 K to 1848 K (1475 °C to 1575 °C). The viscosity values obtained from FactSage closely fit with the experimental values. The viscosity and the slag structure properties are intent by Fourier Transform Infrared (FTIR) and Raman spectroscopy. It is observed that increase in CaO/SiO2 ratio and MgO content in the slag depolymerizes the silicate structure. This leads to decrease in viscosity and activation energy (167 to 149 kJ/mol) of the slag. Also, an addition of Al2O3 content increases the viscosity of slag by polymerization of alumino-silicate structure and activation energy from 154 to 161 kJ/mol. It is witnessed that the activation energy values obtained from experiment closely fit with the Shankar model based on Arrhenius equation.  相似文献   

5.
In this study, the foaming index of CaO-SiO2-FetO and CaO-SiO2-FetO-Al2O3 slags saturated with MgO was measured to understand the relationship between their foaming behavior and physical properties. The foaming index of MgO-saturated slags increases with the FetO content due to the redox equilibrium of FetO. Experimental results indicated that MgO-saturated slag has relatively high ferric ion concentration, and the foaming index increases due to the effect of ferric ion. Therefore, the foaming behavior of MgO-saturated slag is more reasonably explained by considering the effect of ferric ion on the estimation of slag properties such as viscosity, surface tension, and density. Specifically, the estimation of slag viscosity was additionally verified by NBO/T, and this is experimentally obtained through Raman spectroscopy.  相似文献   

6.
This article covers some of our recent work on slag viscosity, the surface tension of liquid Cu-O alloys, and the relative role of Marangoni and bulk flow on refractory wear in iron-silicate slags. A viscosity model developed for slags containing SiO2, Al2O3, Fe2O3, CaO, MgO, MnO, FeO, PbO, NiO, Cu2O, ZnO, CoO, and TiO2 is capable of representing the effects of temperature, silica, and network-modifier cations within a wide range of temperatures and compositions. It forms a useful part of a computational package for multiphase-equilibrium (MPE) calculations and for predicting slag viscosities. The models are well applicable to a range of industrial slags (blast furnace, new iron making, base-metal and Platinum Group Metals (PGM) smelting, and coal-ash slags). The package has also some capability of predicting the viscosity of slags containing suspended solids. The surface tension of liquid copper-oxygen alloys has also been analyzed. The adsorption behavior of oxygen in liquid copper is well represented by the combined Langmuir-Gibbs isotherm. According to the rate data for silica-rod dissolution in liquid iron-silicate slags at 1573 K, the preferential attack at the slag line diminishes as the linear velocity of flow at the surface of the rotating silica rod reaches 9 to 16 cm/s. A tentative analysis gives the critical condition, that relates the critical Reynolds (Re) and Marangoni (Ma) number by the equation Re*2=0.13 Ma*. This article is dedicated to Professor Ken Mills. The authors have been inspired by Ken and have benefited greatly from his encouragement in their research in a number of areas. This article is based on a presentation given in the Mills Symposium entitled “Metals, Slags, Glasses: High Temperature Properties & Phenomena,” which took place at The Institute of Materials in London, England, on August 22–23, 2002.  相似文献   

7.
The present study reports experimental results on the reduction of FeO in molten CaO-SiO2-Al2O3-MgO-FeO slags by solid carbon in an extended-arc plasma reactor. The reduction reaction was found to be controlled by mass transport of FeO in liquid slag. The CO gas generated stirs the bath to establish a convective mass transport system. CO also causes foaming. An analysis using dimensionless numbers provides correlations between the rate constant, k, as well as the foaming index, Σ, with some properties of the slag such as viscosity, surface tension, and density. A correlation between k and Σ is also developed using these parameters for slag characteristics.  相似文献   

8.
ABSTRACT

The foaming behaviour originating from the reduction of iron oxide in molten CaO–SiO2–MgO–Al2O3–TiO2 slag was studied at 1500°C with the aid of a real-time foaming process monitoring system. The effect of TiO2 content and binary basicity on the slag foaming were investigated. It was found that the TiO2 content has a significant influence on the foaming degree, while the basicity of the slag has a smaller influence. The foam-generation time, foam duration, and foam-elimination time greatly increased with increasing TiO2 content, while they slightly increased with increasing basicity. Furthermore, the source of gas and the effect of physical properties of the slag on the foaming behaviour were also discussed. This study can provide a guideline for the utilisation of high-ratio titanium-bearing magnetite ore in the blast-furnace iron-making process, which is seriously affected by the slag-foaming problem.  相似文献   

9.
The influence of Al2O3 in the range of 10–20 mass% and TiO2 in the range of 0.55–5 mass% on the flow behavior, viscosity, density, and surface tension of molten industrial blast furnace slag with CaO/SiO2 = 1.13 is investigated using a high-temperature microscope, a rotating viscometer, and the maximum bubble pressure method. The measurement results show that Al2O3 acts as a network former in the studied CaO–SiO2–MgO–Al2O3–TiO2 slags. With an increase in the Al2O3 content from 10 to 20 mass%, the viscosity and surface tension of the slags increase and the density decreases. In contrast to Al2O3, the TiO2 acts as a surfactant and network breaker in the range of up to 15 mass%. The addition of TiO2 up to 15 mass% results in a decrease in the viscosity in the liquid-dominated region and a decrease in the surface tension of the studied slags. Therefore, the density increases with the addition of TiO2 due to increasing molar volume. The behavior of the breakpoint temperature on all the viscosity curves is in complete agreement with the behavior of the flow point temperature and crystallization temperatures of melilite and perovskite.  相似文献   

10.
《钢铁冶炼》2013,40(1):20-25
Abstract

Three high basicity slags (A, B and C) were used in laboratory to refine Al killed steel to target high oxide cleanliness and low melting temperature inclusions. Inclusions were of CaO–MgO–Al2O3–SiO2 system after 90 min reaction, parts of which were MgO based. Total oxygen were in the range of 0·0007–0·0010 and 0·0005–0·0010% respectively when slag A (CaO/SiO2, 6–8; Al2O3, ~40%) and slag B (CaO/SiO2, 6–8; Al2O3, ~30%) were applied, with inclusions all in spherical shape and mainly <5 μm. Inclusion composition concentrated in or around the lower melting point region (<1500°C) under slag A, while it became more scattered under slag B. Total oxygen varied between 0·0008 and 0·0011% under slag C (CaO/SiO2, 3–4; Al2O3, about 20–25%). Many of the inclusions were in larger size, irregular morphology and located far away from the lower melting point region. Formation of MgO based inclusions closely related to solubility behaviour of MgO in the slag.  相似文献   

11.
The viscosity of smelting slags from the Glogow copper plant in Poland was measured using a concentric cylinder viscometer. These slags contain typically 45 pct SiO2, 16 pct CaO, 8 pct MgO, 11 pct Al2O3, and only 5 to 7 pct total iron. The viscosity was measured as a function of the CaO, MgO, SiO2, Cu2O, Cr2O3, and Fe3O4 contents in the temperature range from 1473 to 1623 K. Silica and chromium oxide additions increased the viscosity, while small additions of the other oxides decreased the viscosity. However, at large additions of CaO or MgO, cooling resulted in a rapid increase in the viscosity upon reaching the transition temperature. This critical transition temperature increased with increasing additions of CaO and MgO. This was explained by the precipitation of solid particles upon reaching the saturation limit. Depending on the slag composition, the activation energy for viscous flow was found to be in the range from 200 to 370 kJ/mol.  相似文献   

12.
The effect of FeO and CaO on the sulfide capacity in MgO-SiO2-FeO based slags equilibrating with Fe-Ni alloys at 1773 K and 1873 K (1500 °C and 1600 °C) was investigated. The sulfide capacity in the MgO-SiO2-FeO and MgO-SiO2-CaO-FeO slags increased with higher FeO content and higher temperatures due to an increase in the activity of O2? and a decrease in the activity coefficient of sulfide ion in slag. The sulfide capacity of the MgO-SiO2-CaO-FeO slag also increased with an increase in the CaO content due largely to the increase in the activity of O2?. Furthermore, CaO and FeO seem to be more effective than MgO in increasing the sulfide capacity in the MgO-SiO2-CaO-FeO slag system. In addition, the comparison of the experimental results with the theoretical estimate using the modified empirical optical basicity showed relatively good linear agreement.  相似文献   

13.
Viscosities of slags containing Al2O3, CaO, CrOx, MgO and SiO2 were measured in contact with metallic chromium using the rotating cylinder method. The modified Urbain model, developed at the University of Queensland, was extended to include MgO, CrO and Cr2O3, in addition to existing Al2O3, CaO, FeO and SiO2. Chromium oxides, in general, decrease the slag viscosity, although addition of trivalent oxide raises up the liquidus temperature and thus limits the measuring range. The model was able to describe the viscosity of complex slags reasonably well in most experimental cases.  相似文献   

14.
以Al2O3质量分数为30%的高铝渣为原料,研究了该渣系下的液相比例、黏度、表面张力和密度在不同n(CaO)/n(Al2O3) (C/A=1.4、1.5、1.6)、MgO质量分数(0%、5%、10%)下与温度变化(1 550、1 600、1 650 ℃)的关系,并分析了不同n(CaO)/n(Al2O3)下高铝渣特性对发泡行为的影响及与发泡指数之间的关系。结果表明,不同n(CaO)/n(Al2O3)下,MgO质量分数不同,则熔渣成为全液相时的温度均有所差异;渣的黏度和表面张力随温度的升高而减小,并且温度越高,黏度减小的幅度越小,表面张力减小的幅度越大,而渣的密度随温度升高而增加,但幅度较小,因此温度对密度的影响较小。在温度为1 650 ℃、MgO的质量分数分别为0%和5%的渣系中,改变w(CaO)/w(SiO2)可以影响熔渣的起泡性能,因此确立了该渣系下熔渣特性与发泡指数的关系。综合分析熔渣特性结果发现n(CaO)/n(Al2O3)不宜过高,最佳比值为1.4。通过对不同条件下高铝渣物性及发泡性能的试验分析,掌握高铝渣物性参数的变化规律及发泡指数,为高铝渣在冶金过程中的应用提供一定参考。  相似文献   

15.
Viscosity measurements at high temperature were made using a concentric cylinder viscometer. These measurements were conducted on a typical lead blast furnace slag, and this master slag doped with various amounts of SiO2, A12O3, CaO, MgO, and/or ZnO. It was found that additions of A12O2 and/or SiO2 increased the viscosity of the master slag over the entire temperature range of interest (1150 °C to 1350 °C). Additions of the basic oxides CaO, MgO, and/or ZnO decreased the viscosity at high temperatures but raised the slag liquidus temperature. The majority of the measured viscosities are accurate within ± 10 pct. The viscosity data of this study, along with that of several similar studies from the literature, were correlated with the weight parameter (WP), a composition-dependent function similar to a basicity ratio. Analytical expressions were developed relating viscosity and the WP at several temperatures between 1150 °C and 1350 °C. Viscosities calculated using these expressions have estimated accuracies of ±1 poise (within certain temperature and composition limits). PbO and ZnO activity coefficient data from the literature were collected and correlated with composition-dependent functions. The calculated activity coefficients are considered accurate within ±0.3 for γpbo and ±0.5 for γzn within certain composition and temperature limits. Formerly St. Joe Minerals Corporation Fellow in Extractive Metallurgy, Department of Metallurgical Engineering, Colorado School of Mines  相似文献   

16.
The effect of Al2O3 and MgO on the interfacial tension between the molten CaO–SiO2‐based slag and solid steel at 1773 K was studied. The interfacial tension of molten slags slightly increased with increasing Al2O3, but no significant change of interfacial tension was observed with higher MgO. Fourier transform infrared (FTIR) of as‐quenched slag samples indicated the slag structure to polymerize with Al2O3 additions, but depolymerize with MgO additions. Further detailed studies of the slag surface using X‐ray photoelectron spectroscopy (XPS) showed the fraction of free oxygen ions to decrease with higher Al2O3 but remained constant at higher MgO. The results suggested that interfacial tension decreases not only with the depolymerization of the melt, but also with an increase in the free oxygen ions at the molten slag/solid steel interface.  相似文献   

17.
An equilibrium study was undertaken to investigate the effect of the CaO/SiO2 and Fe/SiO2 ratios and the SnO and Al2O3 contents of slags on the distribution of Fe and Sn between slag and metal in tin smelting. The experiments were performed at 1200 °C by equilibrating Sn-Fe alloys with silicate slags under reducing conditions in closed crucibles. The slag and metal analyses were used to calculate the γSnOFeO ratio in the slags and a multiple-linear regression on these values indicated that, in the range of slag compositions investigated, γSnOFeO is a function only of the CaO/SiO2 ratio. At 1200 °C, γSnOFeO varies from about 1.1 for CaO-free slags to 3.6 for slags in which the CaO/SiO2 ratio is 1.0. In practical applications, the slag-metal equilibrium in tin smelting is usually discussed in terms of the variation of the distribution coefficient,k, with the Fe content of the metal, wherek is defined ask = [pct Sn]/[pct Fe] · (pct Fe)/(pct Sn). An equation fork was derived in terms of the atom fraction of iron in the metal, the γSnOFeO in the slag, and the temperature. This equation was used to construct graphs ofk as a function of the iron content over the slag compositions and at temperatures which cover the range of tin smelting practice.  相似文献   

18.
The viscosity of CaO-SiO2-Al2O3 slags with 8% MgO and 4% B2O3 is investigated over a broad range of composition, by means of a simplex-lattice experiment design. For slag of basicity 6–8 in the upper left region of the local simplex, with 15–25% Al2O3, 8% MgO, and 4% B2O3, the viscosity is high: 9.4–26.4 P over the range 1500–1530°C. Displacement of the slags of basicity 5–8 to the lower region of the local simplex ensures high fluidity in the given range of Al2O3 concentration: the viscosity is 1.5–6.1 P over the range 1500–1530°C.  相似文献   

19.
This paper provides an informative basis on MgO saturation in secondary metallurgical slags by conducting thermo‐chemical calculations in the ternary base system Al2O3‐CaO‐SiO2 at 1600 °C, 1650 °C and 1700 °C using FactSageTM6.0. The results for lime‐aluminate and lime‐silicate slag are displayed in a straightforward and illustrative manner. In addition, approximate equations describe the temperature dependencies: a temperature rise of 50 °C increases the MgO saturation limit by about 1 wt. %.  相似文献   

20.
A thermodynamic study was made on the MnO‐CaO‐MgO‐SiO2‐Al2O3 slags that are typical of the production of ferromanganese in submerged arc furnaces. The Al2O3 content of the slags was kept constant at 5 per cent by mass. The activity‐composition relationship in Pt‐Mn binary alloys were re‐determined for calibration purposes at 1300, 1400 and 1500°C and po2 values between 5.40×10?6 and 4.54×10?13 atm. A linear regression equation was derived to predict the activity coefficients of manganese, in Pt‐Mn alloys at 1500°C. The effect of concentration, basicity ratio and CaO‐to‐MgO ratio on MnO activities in above mentioned complex slags was investigated at 1500 °C and at two different po2 values of 4.76×10?7 and 5.80×10?8 atm. It was found that aMno values increase with increasing MnO, and tend to increase with an increasing CaO‐to‐MgO ratio. The aMnO values also increase with increasing basicity ratio. The activity coefficient of MnO increases with an increase in its mole fraction in the slag. Quadratic multivariable regression model equations which represent the activity data successfully and which can be used to predict the MnO activities in the compositional range of this study were developed. The MnO activity data was interpreted in terms of a slag model which describes the thermodynamic properties of the slag successfully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号