首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Old-style cheese starters were evaluated to determine their ability to produce cheese aroma compounds. Detailed analyses of the aroma-producing potential of 13 old-style starter cultures were undertaken. The proteolytic profile of the starters was established by an accelerated ripening study using a model cheese slurry and compared with those of a commercial aromatic starter and commercial Cheddar cheeses. To evaluate the aromatic potential of the starter cultures, quantification of free amino acids liberated and volatile compounds after 15 d of ripening at 30°C as well as sensory analysis were carried out. Results showed that proteolysis patterns of all 13 starter cultures in the curd model were comparable to those of commercial Cheddar cheeses. All tested cultures demonstrated the ability to produce high amounts of amino acids recognized as precursors of aroma compounds. Several differences were observed between the starters and commercial Cheddar cheeses regarding some amino acids such as glutamate, leucine, phenylalanine, proline, and ornithine, reflecting the various enzymatic systems present in the starters. Starters Bt (control) and ULAAC-E exhibited various significant differences regarding their free amino acid profiles, as confirmed by sensory analysis. In addition, identification of volatile compounds confirmed the presence of several key molecules related to aroma, such as 3-methylbutanal and diacetyl. Besides the aroma-producing aspect, 2 starters (ULAAC-A and ULAAC-H) seem to possess an important ability to generate large amounts of γ-aminobutyric acid, which contributed up to 15% of the total amino acids present in the model curd after 15 d ripening. γ-Aminobutyric acid is an amine well-known for its antihypertensive and calming effects.  相似文献   

3.
Diffusion culture allows the production of concentrated cheese starter without centrifugation principally by removing inhibitory lactate from fermentations. Laboratory scale fermentation systems are described which remove lactate via a diffusion membrane. Single and mixed strain cultures were grown to concentrations of 1011/ml in an enzyme digest of skimmed milk supplemented with yeast extract. The present stage system is capable of producing at least half the annual bulk starter requirements of a creamery processing 100,000 gal of milk/day. Concentrated cultures were harvested in hypodermic syringes and as frozen granules. Concentrates were tested for purity and activity and suitable ones used in a commercial cheesemaking trial which produced a high proportion of extra selected grade Cheddar cheese.  相似文献   

4.
5.
Milk coagulation and acidity traits are important factors to inform the cheesemaking process. Those traits have been deeply studied in bovine milk, whereas scarce information is available for buffalo milk. However, the dairy industry is interested in a method to determine milk coagulation and acidity features quickly and in a cost-effective manner, which could be provided by Fourier-transform mid-infrared (FT-MIR) spectroscopy. The aim of this study was to evaluate the potential of FT-MIR to predict coagulation and acidity traits of Mediterranean buffalo milk. A total of 654 records from 36 herds located in central Italy with information on milk yield, somatic cell score, milk chemical composition, milk acidity [pH, titratable acidity (TA)], and milk coagulation properties (rennet coagulation time, curd firming time, and curd firmness) were available for statistical analysis. Reference measures of milk acidity and coagulation properties were matched with milk spectral information, and FT-MIR prediction models were built using partial least squares regression. The data set was divided into a calibration set (75%) and a validation set (25%). The capacity of FT-MIR spectroscopy to correctly classify milk samples based on their renneting ability was evaluated by a canonical discriminant analysis. Average values for milk coagulation traits were 13.32 min, 3.24 min, and 39.27 mm for rennet coagulation time, curd firming time, and curd firmness, respectively. Milk acidity traits averaged 6.66 (pH) and 7.22 Soxhlet-Henkel degrees/100 mL (TA). All milk coagulation and acidity traits, except for pH, had high variability (17 to 46%). Prediction models of coagulation traits were moderately to scarcely accurate, whereas the coefficients of determination of external validation were 0.76 and 0.66 for pH and TA, respectively. Canonical discriminant analysis indicated that information on milk coagulating ability is present in the MIR spectra, and the model correctly classified as noncoagulating the 91.57 and 67.86% of milk samples in the calibration and validation sets, respectively. In conclusion, our results can be relevant to the dairy industry to classify buffalo milk samples before processing.  相似文献   

6.
The paper considers the classification, composition and growth properties of starter cultures and the significance of bacteriophage and inhibitor effects. The requirements for starter culture are examined and tables given summarizing the features of growth and acid production in milk. The importance of flavour characteristics and curd maturation is discussed, the effects of bacteriophage on cheesemaking studied, and the inhibitory substances present in milk analysed. The use of starter cultures and the selection of the most effective type - single, multiple or mixed strain - used in the production of hard cheese is assessed.  相似文献   

7.
A detailed investigation was undertaken to determine the effects of four single starter strains, Lactococcus lactis subsp. lactis 303, Lc. lactis subsp. cremoris HP, Lc. lactis subsp. cremoris AM2, and Lactobacillus helveticus DPC4571 on the proteolytic, lipolytic and sensory characteristics of Cheddar cheese. Cheeses produced using the highly autolytic starters 4571 and AM2 positively impacted on flavour development, whereas cheeses produced from the poorly autolytic starters 303 and HP developed off-flavours. Starter selection impacted significantly on the proteolytic and sensory characteristics of the resulting Cheddar cheeses. It appeared that the autolytic and/or lipolytic properties of starter strains also influenced lipolysis, however lipolysis appeared to be limited due to a possible lack of availability or access to suitable milk fat substrates over ripening. The impact of lipolysis on the sensory characteristics of Cheddar cheese was unclear, possibly due to minimal differences in the extent of lipolysis between the cheeses at the end of ripening. As anticipated seasonal milk supply influenced both proteolysis and lipolysis in Cheddar cheese. The contribution of non-starter lactic acid bacteria towards proteolysis and lipolysis over the first 8 months of Cheddar cheese ripening was negligible.  相似文献   

8.
Cheese production on a modern scale depends largely on reliable starters which are required to produce uniform acidity during long working hours, be consistent from day to day, and able to work in changeable media for a variety of products under different techniques. Sufficient starters are available, selected to ensure that they have these qualities, but care in handling from day to day, and during the scaling up in quantity, is the most important factor in the practical world of cheesemaking. Some of the main reasons for poor starter behaviour are set out, and a number of alternative systems for maintaining their performance. Care begins in the laboratory, and attention to detail at this stage must be followed by the same vigilance during bulk starter production. One of the most effective methods of achieving overall reliability is described.  相似文献   

9.
The role of autolysis of lactic acid bacteria in the ripening of cheese   总被引:18,自引:0,他引:18  
The importance of autolysis of lactic acid bacteria in cheese ripening is evident from the literature. However, the mechanisms and the consequences still require investigation. The consequences of autolysis of mesophilic starters in Cheddar cheese are discussed and highlights from current physiological and genetic studies on starter autolysis are presented. The relative merits of measuring starter autolysis in cheese by viable starter cell densities, electron microscopic observations and assay of cell-free cytoplasmic enzymes are discussed for cheese studies using different starter strains and added phage to achieve different levels of autolysis. The balance of both the intact and autolysed starter cells in young curd appear to be important in cheese ripening. The intact cells are necessary for physiological reactions such as lactose fermentation and oxygen removal and possibly for a number of flavour reactions. In contrast, the main consequence of autolysed cells in cheese is to accelerate the peptidolytic reactions. The possible influences of autolysis of adventitious lactic acid bacteria during cheese ripening are discussed.  相似文献   

10.
A nonlinear programming optimization model was used to evaluate the net revenues and potential profit-ability of microfiltration (MF) prior to cheesemaking in the 3-year period 1998 to 2000, using monthly milk price and composition data. The model identifies the optimal mix of milk resources and determines if MF cheesemaking produces a higher net revenue than conventional cheesemaking that uses NDM and condensed milk for fortification. This study demonstrates the potential of this model to evaluate new technologies in cheese manufacture and improve decision making in the cheese industry. The use of MF produced higher net revenues in 30 out of the 36 mo for both Cheddar and low-moisture, part-skim mozzarella, leading to an appreciable increase in net revenue (vs. conventional cheesemaking) for both cheeses. The benefit from MF in net revenue was greater when the cream price was high. The use of 3X MF yielded the same net revenue as 2X MF. An estimate of manufacturing costs of MF vs. conventional cheesemaking was also made. To this end, the yields of products were calculated by the optimization model, while the production cost of each product was estimated from data of two economic engineering studies and a MF cheesemaking trial. The manufacturing cost of MF Cheddar was slightly higher than the manufacturing cost of conventional Cheddar. However, the benefit in net revenue from the use of MF was estimated to be higher than the difference in manufacturing costs. Moreover, some advantages in the new coproducts of MF Cheddar could outweigh its higher manufacturing cost. The relationships between prices and recoveries of coproducts required to render MF profitable were identified.  相似文献   

11.
《International Dairy Journal》2005,15(11):1156-1174
Control of cheese moisture is paramount to maximizing yield and profitability of a cheesemaking operation. Modeling and prediction of cheese moisture prior to pressing from a large industrial database for stirred-curd Cheddar cheese made with non-standardized and standardized milk was carried out using neural networks (NN). The number of model input variables was reduced by removing or combining some of them, based on cheesemaking knowledge and on the results of two tests estimating the impact of each model input. Input removal was carried out until the validation mean absolute prediction error (MAPE) increased. An initial NN cheese moisture model with 38 input process variables, coded as 57 NN inputs, was reduced to one with 21 input process variables, coded as 34 NN inputs. For the latter, the validation MAPE was 0.53% cheese moisture in a range of cheese moisture of 13.2%, and 0.51% for the best 25% of models (out of 100). For the range of operating conditions of the process in this study, four main groups of variables were found to be the most influential on the prediction of cheese moisture: cutting and subsequent stirring of the curd, curd rinsing temperature, starter quantity, activity and strain, and seasonal variation of milk composition. The NN model with the selected input variables and optimized number of hidden neurons was then used to predict cheese moisture for ranges of these variables. This study showed that NN models can successfully extract input–output variable relationships from industrial production data in spite of the inherent error in these data. The resulting NN models can be used both for research to develop the base of knowledge on production variables and their complex interactions, as well as for the prediction of cheese moisture.  相似文献   

12.
A Plackett-Burman (PB) experimental design was applied as a screening method to eight process factors. This method identified starter concentration and curd cutting size as the most significant parameters affecting the manufacture of semi-hard pressed cheese made from blended milk concentrated by ultrafiltration. Both factors, together with the bacterial starter composition, were subsequently evaluated at two levels in a full factorial design (FD). The PB and FD designs were optimised in accordance with yield and sensory quality. A partial least square calibration identified elasticity and internal and external visual evaluations as the main attributes that increased cheese quality. When the final optimised conditions were applied to the manufacturing process, milk diafiltration or pre-acidification and the cutting step were no longer necessary, making continuous cheesemaking process a simpler and more feasible alternative. The yield was 10% higher at the end of the optimisation with no negative effects on the sensory quality.  相似文献   

13.
A new processing method that rapidly forms curds and whey from milk has the potential to improve cheesemaking procedures if cheese starter cultures can tolerate the processing conditions. The survival of Lactobacillus delbrueckii ssp. bulgaricus, Lactococcus lactis ssp. lactis, or Streptococcus thermophilus through this new process was evaluated. Inoculated milk containing 0, 1, or 3.25% fat or Lactobacillus MRS broth or tryptone yeast lactose broth (depending on microorganism used) was sparged with CO2 to a pressure of 5.52 MPa and held for 5 min at 38 degrees C. Broth contained 7.93 to 8.78 log CFU/ ml before processing and 7.84 to 8.66 log CFU/ml afterward. Before processing, milk inoculated with L bulgaricus, L. lactis, or S. thermophilus contained 6.81, 7.35, or 6.75 log CFU/ml, respectively. After processing, the curds contained 5.68, 7.32, or 6.50 log CFU/g, and the whey had 5.05, 6.43, or 6.14 log CFU/ml, respectively. After processing, the pHs of control samples were lower by 0.41 units in broth, 0.53 units in whey, and 0.89 units in curd. The pH of the processed inoculated samples decreased by 0.3 to 0.53 units in broth, 0.32 to 0.37 units in whey, and 0.93 to 0.98 units in the curd. Storing curds containing L. lactis at 30 degrees C or control curds and curds with L. bulgaricus or S. thermophilus at 37 degrees C for an additional 48 h resulted in pHs of 5.22, 5.41, 4.53, or 4.99, respectively. This study showed that milk inoculated with cheese starter cultures and treated with CO2 under high pressure to precipitate casein-produced curds that contained sufficient numbers of viable starter culture to produce lactic acid, thereby decreasing the pH.  相似文献   

14.
Attenuated starter bacteria cannot produce acid during cheese manufacture, but contain enzymes that contribute to cheese ripening. The aim of this study was to investigate attenuation of starter bacteria using high pressure treatment, for use in combination with a primary starter for Cheddar cheese manufacture, and to determine the effect of such adjunct cultures on secondary proteolysis during ripening. Lactococcus lactis ssp. cremoris HP and L. lactis ssp. cremoris 303 were attenuated by pressure treatment at 200 MPa for 20 min at 20 °C. Cheddar cheese was manufactured using untreated cultures of both these starter strains, either alone or in combination with their high pressure-treated equivalents. High pressure-treated starters did not produce acid during cheese manufacture and starter counts in cheeses manufactured using high pressure-treated starter did not differ from those of the controls. Higher levels of cell lysis were apparent in cheese manufactured using high pressure-treated strains than in the controls after 26 d of ripening. Small differences were observed in the peptide profiles of cheeses, analysed by reversed-phase HPLC; cheeses manufactured using high pressure-treated starters also had slightly higher levels of amino acids than the relevant controls. Overall, addition of high pressure-treated starter bacteria as a secondary starter culture accelerated secondary proteolysis in Cheddar cheese.

Industrial relevance

Attenuated starters provide extra pool of enzymes, which can influence cheese ripening, without affecting the cheese making schedule. This paper presents an alternative method for attenuation of starter bacteria using high pressure treatment and their subsequent use to accelerate secondary proteolysis in Cheddar cheese during ripening.  相似文献   

15.
Cheese yield is strongly influenced by the composition of milk, especially fat and protein contents, and by the efficiency of the recovery of each milk component in the curd. The real effect of milk composition on cheesemaking ability of goat milk is still unknown. The aims of this study were to quantify the effects of milk composition; namely, fat, protein, and casein contents, on milk nutrient recovery in the curd, cheese yield, and average daily yield. Individual milk samples were collected from 560 goats of 6 different breeds. Each sample was analyzed in duplicate using the 9-laboratory milk cheesemaking assessment, a laboratory method that mimicked cheesemaking procedures, with milk heating, rennet addition, coagulation, curd cutting, and draining. Data were submitted to statistical analysis; results showed that the increase of milk fat content was associated with a large improvement of cheese yield because of the higher recovery of all milk nutrients in the curd, and thus a higher individual daily cheese yield. The increase of milk protein content affected the recovery of fat, total solids, and energy in the curd. Casein number, calculated as casein-to-protein ratio, did not affect protein recovery but strongly influenced the recovery of fat, showing a curvilinear pattern and the most favorable data for the intermediate values of casein number. In conclusion, increased fat and protein contents in the milk had an effect on cheese yield not only for the greater quantity of nutrients available but also for the improved efficiency of the recovery in the curd of all nutrients. These results are useful to improve knowledge on cheesemaking processes in the caprine dairy industry.  相似文献   

16.
The robustness of the starter culture during cheese fermentation is enhanced by the presence of a rich consortium of microbes. Natural starters are consortia of microbes undoubtedly richer than selected starters. Among natural starters, natural whey starters (NWS) are the most common cultures currently used to produce different varieties of cheeses. Undefined NWS are typically used for Italian cooked, long-ripened, extra-hard, raw milk cheeses, such as Parmigiano Reggiano and Grana Padano. Together with raw milk microbiota, NWS are responsible for most cheese characteristics. The microbial ecology of these 2 cheese varieties is based on a complex interaction among starter lactic acid bacteria (SLAB) and nonstarter lactic acid bacteria (NSLAB), which are characterized by their different abilities to grow in a changing substrate. This review aims to summarize the latest findings on Parmigiano Reggiano and Grana Padano to better understand the dynamics of SLAB, which mainly arise from NWS, and NSLAB, which mainly arise from raw milk, and their possible role in determining the characteristics of these cheeses. The review is presented in 4 main sections. The first summarizes the main microbiological and chemical properties of the ripened cheese as determined by cheese-making process variables, as these variables may affect microbial growth. The second describes the microbiota of raw milk as affected by specific milk treatments, from milking to the filling of the cheese milk vat. The third describes the microbiota of NWS, and the fourth reviews the knowledge available on microbial dynamics from curd to ripened cheese. As the dynamics and functionality of complex undefined NWS is one of the most important areas of focus in current food microbiology research, this review may serve as a good starting point for implementing future studies on microbial diversity and functionality of undefined cheese starter cultures.  相似文献   

17.
Microbial diversity of the raw milk for the production of Fior di Latte di Agerola and its changes during cheesemaking were studied. Viable counts showed that at the end of curd ripening, loads of lactic acid bacteria, both mesophilic and thermophilic rods and cocci, higher than those commonly evidenced in similar cheeses produced by using natural or commercial starters, were detected. Identification of 272 isolates, supported by molecular diagnostic aids, evidenced representative cultures of a high number of bacterial taxa of interest as participating in the process, although most of the isolates belonged to Lactococcus lactis and Lactobacillus helveticus species. RAPD-PCR and REA-PFGE biotyping were performed for the isolates of the above species and it was shown that most of the strains isolated from the raw milk occurred during the whole cheesemaking process, and an active role of these strains in the fermentation was supposed. The results offer further proof of the importance of the raw milk as source of technologically interesting strains of lactic acid bacteria capable of driving the fermentation of traditional cheeses.  相似文献   

18.
Clam rennet, which is a crude enzyme preparation of cathepsin B-like protease from clam viscera was characterized and compared to porcine pepsin and calf rennet for its suitability as a milk coagulant in cheesemaking. Clam rennet was more proteolytic and produced a softer curd than the other two coagulants. However, influences of the pH and temperature on milk clotting with clam rennet were very similar to those of calf rennet. The cheddar cheese made from clam rennet was not inferior to the Cheddar cheese made from calf rennet. Quality enhancement occurred despite the view that high ratio of proteolytic to clotting activity is generally considered to be unfavorable for cheese-making. The higher proteolytic activity appeared to accelerate the ripening process. A small yield loss occurred as a result of excessive proteolysis during cheese-making.  相似文献   

19.
A study was conducted to determine the most suitable lactic culture combinations and the techniques for the preparation of low moisture part skim (LMPS) mozzarella cheese (pizza cheese) with a low level of galactose. The cheesemaking time tested for all 12 culture combinations was less than 3 h and hence was found suitable for pizza cheesemaking. The initial accumulated galactose concentration was lower in unstretched curd followed by no-brine curd and stretched curd in ascending order. During storage of the cheese for 7 days, the galactose percentage in the cheeses prepared using cultures comprising galactose-fermenting strains of Lactobacillus helveticus and Streptococcus thermophilus was 0.30 in stretched curd, 0.04 in unstretched curd and 0.03 in no-brine curd. The degree of reduction in the level of galactose in pizza cheese during storage was maximum with the no-brine curd technique followed by the unstretched and stretched curd techniques in that order. This study provides information regarding selection of starter culture combinations and techniques for pizza cheesemaking based on consumer preference for low or moderate browning mozzarella cheese as a result of its galactose concentration.  相似文献   

20.
Twenty-nine multiparous cows of each of the Jersey and Friesian breeds, all kappa-casein AB phenotype, were grazed together and managed identically. On three occasions during 10 d in spring (early lactation), milk was collected from all cows at four consecutive milkings and bulked according to breed. On a separate occasion, milk samples were also collected from each cow at consecutive a.m. and p.m. milkings to form one daily sample per cow. The bulked milks (800-1000 l per breed on each occasion) were standardized to a protein:fat (P:F) ratio of 0.80, and 350 l from each breed was made into Cheddar cheese. The solids content of the remaining Friesian milk was then increased by ultrafiltration to a solids concentration equal to that of the Jersey milk. This solids-standardized Friesian milk and a replicate batch of P:F standardized Jersey milk were made into two further batches of Cheddar cheese in 350-l vats. Compared with Friesian milk, Jersey milk had higher concentrations of most milk components measured, including protein, casein and fat. There were few difference in milk protein composition between breeds, but there were differences in fat composition. Friesian milk fat had more conjugated linoleic acid (CLA) than Jersey milk fat. Jersey milk coagulated faster and formed firmer curd than Friesian milk. Concentrations of some milk components were correlated with coagulation parameters, but relationships did not allow prediction of cheesemaking potential. Jersey milk yielded 10% more cheese per kg than Friesian milk using P:F standardized milk, but for milks with the same solids concentration there were no differences in cheese yield. No differences in cheese composition between breeds were detected. Differences in cheesemaking properties of milk from Jerseys and Friesians were entirely related to the concentrations of solids in the original milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号