首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hanning Li 《Fuel》2011,90(1):412-420
Raw iron ore has been investigated for use as a catalyst in direct liquefaction of peat into bio-crude by supercritical water treatment. The liquefaction treatments were conducted at temperatures from 350 °C to 500 °C for a residence time from 10 min to 4 h. The supercritical water treatment of peat with the iron ore generally resulted in 19-40 wt% yield of heavy oil (HO) that has a higher heating value (HHV) of 30-37 MJ/kg. An increase in the operating temperature generally increased gas yield and decreased oil and char yields, while a maximum HO formation was observed at around 400 °C. At 400 °C for a residence time of 2 h, the addition of the raw iron ore in the operation produced HO at a very high yield of about 40 wt%, nearly doubling that of the treatment without catalyst. An increase of water-to-peat ratio led to enhanced formation of HO products, accompanied by a decrease in gas or char yield. The optimal reaction time appeared to be 2 h for the maximum HO production, and a longer residence time than 2 h generally led to a decrease in HO yield but an increase in gas yield. Compared with the raw iron ore, its H2-reduced form and two synthesized iron-based catalysts (FeOOH and Fe2O3) all showed a lower activity for HO production. Some conventional biomass liquefaction catalysts (i.e., KOH, FeCl3 and FeSO4) showed negligible or even negative effects on the HO yield, while these catalysts were found very active for promoting the gas yields and hydrogen formation.  相似文献   

2.
Transesterification of sunflower oil with methanol to form biodiesel was performed in a countercurrent trickle-bed reactor, using calcium oxide particles 1-2 mm in diameter as a packed, solid base catalyst. Although biodiesel production generally requires a reaction temperature below the boiling point of methanol to maintain a heterogeneous, liquid-liquid reaction, in the present study the reaction temperature was varied from 80 to 140 °C to confirm the progress of transesterification in a gas-liquid-solid phase reaction system. Oil droplets released from a thin tube flowed downward, while vaporized methanol flowed upward in the bed. The effects of the reaction temperature, methanol and oil flow rates, and the bed height on the FAME yield were investigated. The oil residence time in the reactor, which was controlled by changing both the oil flow rate and the bed height, had a significant effect on the FAME yield. In addition, the FAME yield increased with reaction temperature and was maximal at 373 K due to the change in residence time associated with reduced oil viscosity at higher temperatures. The FAME yield was 98% at a reaction temperature of 373 K when the methanol and oil flow rates were 3.8 and 4.1 mL/h, respectively.  相似文献   

3.
Huayang He 《Fuel》2007,86(3):442-447
A system for continuous transesterification of vegetable oil using supercritical methanol was developed using a tube reactor. Increasing the proportion of methanol, reaction pressure and reaction temperature can enhance the production yield effectively. However, side reactions of unsaturated fatty acid methyl esters (FAME) occur when the reaction temperature is over 300 °C, which lead to much loss of material. There is also a critical value of residence time at high reaction temperature, and the production yield will decrease if the residence time surpasses this value. The optimal reaction condition under constant reaction temperature process is: 40:1 of the molar ratio of alcohol to oil, 25 min of residence time, 35 MPa and 310 °C. However, the maximum production yield can only be 77% in the optimal reaction condition of constant reaction temperature process because of the loss caused by the side reactions of unsaturated FAME at high reaction temperature. To solve this problem, we proposed a new technology: gradual heating that can effectively reduce the loss caused by the side reactions of unsaturated FAME at high reaction temperature. With the new reaction technology, the methyl esters yield can be more than 96%.  相似文献   

4.
Sirin Methakhup 《Fuel》2007,86(15):2485-2490
Extraction of Mae Moh lignite using toluene-tetralin mixture was performed in a batch reactor at a temperature range from 370 to 490 °C and under initial hydrogen pressure up to 12 MPa. Experiments were carried out to investigate the effects of temperature and initial hydrogen pressure on coal conversion, liquid yield and liquid composition. The effect of catalysts Fe2S3, Fe/Ni and Ni/Mo impregnated into activated carbon was also studied. In the absence of a catalyst, the oil yield decreased with temperature above 410 °C and the content of naphtha and kerosene increased while light gas oil and gas oil decreased with increasing temperature. The presence of catalyst would benefit the formation of lighter components, kerosene and light gas oil. Extraction in the presence of Ni/Mo catalyst, the liquid yield reached 64.6 wt% (daf) which included naphtha 2%, kerosene 72.8%, light gas oil 14.9%, gas oil 2.4% and long residue 7.9%. For GC-MS analysis, the fraction of kerosene was composed of tetralin, naphthalene, dodecamethyl-cycloheptasiloxane, methyl dodecanoate, tetradecamethyl-cycloheptasiloxane, ethyl dodecanoate, methyl tetradecanoate and dibutyl phthalate.  相似文献   

5.
Hydrogen could be the energy carrier of the next world scene provided that its production, transportation and storage are solved. In this work the production of an hydrogen-rich gas by air/steam and air gasification of olive oil waste was investigated. The study was carried out in a laboratory reactor at atmospheric pressure over a temperature range of 700 ­ 900 °C using a steam/biomass ratio of 1.2 w/w. The influence of the catalysts ZnCl2 and dolomite was also studied at 800 and 900 °C. The solid, energy and carbon yield (%), gas molar composition and high heating value of the gas (kJ NL− 1), were determined for all cases and the differences between the gasification process with and without steam were established. Also, this work studies the different equilibria taking place, their predominance in each process and how the variables considered affect the final gas hydrogen concentration. The results obtained suggest that the operating conditions were optimized at 900 °C in steam gasification (a hydrogen molar fraction of 0.70 was obtained at a residence time of 7 min). The use of both catalysts resulted positive at 800 °C, especially in the case of ZnCl2 (attaining a H2 molar fraction of 0.69 at a residence time of 5 min).  相似文献   

6.
Supercritical carbon dioxide (SC-CO2) was employed to extract oil rich in omega-3 fatty acids (FAs) from chia seeds, and the physicochemical properties of the oil were determined. A central composite rotatable design was used to analyze the impact of temperature (40 °C, 60 °C and 80 °C), pressure (250 bar, 350 bar and 450 bar) and time (60 min, 150 min and 240 min) on oil extraction yield, and a response surface methodology (RSM) was applied. The extraction time and pressure had the greatest effects on oil. The highest oil yield was 92.8% after 300 min of extraction time at 450 bar. The FA composition varied depending on operating conditions but had a high content of α-linolenic acid (44.4-63.4%) and linoleic acid (19.6-35.0%). The rheological evaluation of the oils indicated a Newtonian behavior. The viscosity of the oil decreased with the increase in temperature following an Arrhenius-type relationship.  相似文献   

7.
In this study, sulphuric acid (H2SO4) was used in the pretreatment of sludge palm oil for biodiesel production by an esterification process, followed by the basic catalyzed transesterification process. The purpose of the pretreatment process was to reduce the free fatty acids (FFA) content from high content FFA (> 23%) of sludge palm oil (SPO) to a minimum level for biodiesel production (> 2%). An acid catalyzed esterification process was carried out to evaluate the low content of FFA in the treated SPO with the effects of other parameters such as molar ratio of methanol to SPO (6:1-14:1), temperature (40-80 °C), reaction time (30-120 min) and stirrer speed (200-800 rpm). The results showed that the FFA of SPO was reduced from 23.2% to less than 2% FFA using 0.75% wt/wt of sulphuric acid with the molar ratio of methanol to oil of 8:1 for 60 min reaction time at 60 °C. The results on the transesterification with esterified SPO showed that the yield (ester) of biodiesel was 83.72% with the process conditions of molar ratio of methanol to SPO 10:1, reaction temperature 60 °C, reaction time 60 min, stirrer speed 400 rpm and KOH 1% (wt/wt). The biodiesel produced from the SPO was favorable as compared to the EN 14214 and ASTM D 6751 standard.  相似文献   

8.
Biodiesel is gaining more and more importance as an attractive fuel due to the depleting fossil fuel resources. Chemically biodiesel is monoalkyl esters of long chain fatty acids derived from renewable feed stock like vegetable oils and animal fats. It is produced by transesterification in which, oil or fat is reacted with a monohydric alcohol in presence of a catalyst to give the corresponding monoalkyl esters. This article reports experimental data on the production of fatty acid methyl esters from vegetable oils, soybean and cottonseed oils using sodium hydroxide as alkaline catalyst. The variables affecting the yield and characteristics of the biodiesel produced from these vegetable oils were studied. The variables investigated were reaction time (1-3 h), catalyst concentration (0.5-1.5 w/wt%), and oil-to-methanol molar ratio (1:3-1:9). From the obtained results, the best yield percentage was obtained using a methanol/oil molar ratio of 6:1, sodium hydroxide as catalyst (1%) and 60 ± 1 °C temperature for 1 h. The yield of the fatty acid methyl ester (FAME) was determined according to HPLC. The composition of the FAME was determined according to gas chromatography. The biodiesel samples were physicochemically characterized. From the results it was clear that the produced biodiesel fuel was within the recommended standards of biodiesel fuel.  相似文献   

9.
Waste cooking oil methyl ester (WCOME) was winterised at 1, 0, −1 and −2°C following a 4×2 factorial design with one replication per cell. The process was carried out by filtration and both the filtrate (solid phase) and the liquid phase were analysed by gas chromatography (GC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Cold filter plugging point (CFPP) and calorific values were measured.Temperatures of 0 and −1°C in conjunction with the quickest cooling rate (0.1°C min−1) and 15-24 h of cooling gave the most successful results in terms of fuel properties.Improvements in the low temperature properties of the winterised fuel were reflected by a reduction of saturated fatty acid methyl esters (SFAME) in the composition by 1.5-6%, by a decrease in the CFPP values by 2-4°C and by a shift of the DSC high temperature melting peak (approx. 5°C) towards lower temperatures in comparison to the original fuel. Calorific values of the winterised WCOME did not significantly change and boiling temperatures increased (approx. 26%) in comparison to the non-winterised WCOME.  相似文献   

10.
The analysis of phase equilibrium between methanol and glycerides during methyl esters of fatty acids (FAME or biodiesel) synthesis at high pressure and temperature is very important for describing the kinetic and process design. It was studied at pressure between 1.1 and 28.0 MPa and temperature from 150 to 270 °C. The transition of phases and composition of identified phases was calculated using RK-Aspen EOS and obtained values were also compared to experimentally determined data at subcritical condition (1.1-4.5 MPa and 150-210 °C).Results of experimental investigation, as well as performed simulation of some specified composition of reaction mixture, showed that system of triglycerides and methanol, at the beginning of reaction (at all analysed conditions except for supercritical state of mixture) is in equilibrium between two liquid phases. During the methanolysis of triglycerides, the phase's distribution was changed accordingly and it highly depends on actual composition of reaction mixture, temperature and pressure. Calculated and measured values indicated that distribution of methanol between the oil phase, the methyl esters, and the glycerol rich phase exists and depends of working condition. As a consequence of fact, that the methanolysis of triglycerides (oil) is mainly realized in the oil-rich phase, at the end of reaction, after all triglycerides are converted into FAME and glycerol, the oil phase disappears. Furthermore, according to the results of phase composition calculation, it was shown that from the beginning to the end of reaction one phase only exists, for methanolysis performed at 270 °C and 20.0 MPa.  相似文献   

11.
This study focused on gasification of biomass and a biomass model compound. Data are presented that show the presence of supercritical water enhances gasification efficiency, as it participates as both a solvent and a reactant. It is established that biomass gasification efficiencies are in the same range for all types of biomass. The thermodynamic changes of state are functions of elemental composition, not biomass species. The oxidation state of carbon atom of biomass is a key variable in determining the changes in enthalpy during both conventional combustion and supercritical water gasification. The oxidation state of the feed (together with the reaction conditions that influence the degree to which water participates as a reactant) also determines the vapor product composition.Decomposition reactions to vapor products are rapid and complete at high temperature (?550 °C), catalytic mediation is not required. Temperature and residence time are important operating parameters for SCW gasification. Less important are the pressure of gasification (in the range of 40-67 MPa) and the presence of catalyst. The vapor yield, gas composition, the carbon and hydrogen balance of SCW gasification are functions of gasification temperature, residence time and biomass load (concentration).  相似文献   

12.
Meranti wood sawdust (MWS) is a cheap and widely available lignocellulosic biomass, which can be a potential source of xylose. This xylose can be an economic raw material for the production of a wide variety of specialty chemicals, mainly xylitol. It is particularly important to establish rapid hydrolysis conditions, which can yield xylose-rich hydrolysate that do not require further treatment. The aim of this research was to study the effect of residence time, temperature, acid concentration, and liquid to solid ratio (LSR) on the formation of xylose and byproducts. Batch hydrolysis was performed using different levels of residence time (10–120 min), temperature (105–130 °C), H2SO4 concentration (2–12%), and LSR (8–20 g/g). One-factor-at-a-time (OFAT) method was followed to select the optimum level of parameters. The residence time, temperature, and acid concentration were found to be the major factors affecting xylose production with the effective level of 60 min, 125 °C, and 4%, respectively. In these conditions, the xylose concentration was 17.9 g/l, corresponding to a yield of above 86% of the potential concentration.  相似文献   

13.
Ligno-cellulosic biomass from different sources presents very variable compositions. Consequently, there is a wide variation in the nature and quantities of gaseous products obtained after thermal treatment of biomasses.The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas yields and composition. Experimental flash pyrolysis of several biomasses at a temperature of 950 °C and a gas residence time of about 2 s was carried out. An attempt was then made to predict gas yields of any biomass according to its composition. We show that an additivity law does not allow the gas yields of a biomass to be correlated with its fractions of cellulose, hemicellulose and lignin. Several potential explanations are then offered and quantitatively demonstrated: it is shown that interactions occur between compounds and that mineral matter influences the pyrolysis process.  相似文献   

14.
This study investigates extraction of Passiflora seed oil by using supercritical carbon dioxide. Artificial neural network (ANN) and response surface methodology (RSM) were applied for modeling and the prediction of the oil extraction yield. Moreover, process optimization were carried out by using both methods to predict the best operating conditions, which resulted in the maximum extraction yield of the Passiflora seed oil. The maximum extraction yield of Passiflora seed oil was estimated by ANN to be 26.55% under the operational conditions of temperature 56.5 °C, pressure 23.3 MPa, and the extraction time 3.72 h; whereas the optimum oil extraction yield was 25.76% applying the operational circumstances of temperature 55.9 °C, pressure 25.8 MPa, and the extraction time 3.95 h by RSM method. In addition, mean-squared-error (MSE) and relative error methods were utilized to compare the predicted values of the oil extraction yield obtained from both models with the experimental data. The results of the comparison reveal the superiority of ANN model compared to RSM model.  相似文献   

15.
C.G. Soni  A.K. Dalai  T. Pugsley 《Fuel》2009,88(5):920-925
Gasification of meat and bone meal followed by thermal cracking of tar was carried out at atmospheric pressure using a two-stage fixed bed reaction system in series. The first stage was used for the gasification and the second stage was used for thermal cracking of tar. In this work, the effects of temperature (650-850 °C) of both stages, equivalence ratio (actual O2 supply/stoichiometric O2 required for complete combustion) (0.15-0.3) and the second stage packed bed height (40-100 mm) on the product (char, tar and gas) yield and gas (H2, CO, CO2, CH4, C2H4, C2H6, C3H6, C3H8) composition were studied. It was observed that the two-stage process increased hydrogen production from 7.3 to 22.3 vol.% (N2 free basis) and gas yield from 30.8 to 54.6 wt.% compared to single stage. Temperature and equivalence ratio had significant effects on the hydrogen production and product distribution. It was observed that higher gasification (850 °C) and cracking (850 °C) reaction temperatures were favorable for higher gas yield of 52.2 wt.% at packed bed height of 60 mm and equivalence ratio of 0.2. The residence time of tar and product gases was varied by varying the packed bed height of second stage. The tar yield decreased from 18.6 wt.% to 14.2 wt.% and that of gas increased from 50.6 wt.% to 54.6 wt.% by changing the packed bed height of second stage from 40 to 100 mm while the gross heating value (GHV) of the product gas remained almost constant (16.2-16.5 MJ/m3).  相似文献   

16.
Umer Rashid 《Fuel》2008,87(3):265-273
Present work reports an optimized protocol for the production of biodiesel through alkaline-catalyzed transesterification of rapeseed oil. The reaction variables used were methanol/oil molar ratio (3:1-21:1), catalyst concentration (0.25-1.50%), temperature (35-65 °C), mixing intensity (180-600 rpm) and catalyst type. The evaluation of the transesterification process was followed by gas chromatographic analysis of the rapeseed oil fatty acid methyl esters (biodiesel) at different reaction times. The biodiesel with best yield and quality was produced at methanol/oil molar ratio, 6:1; potassium hydroxide catalyst concentration, 1.0%; mixing intensity, 600 rpm and reaction temperature 65 °C. The yield of the biodiesel produced under optimal condition was 95-96%. It was noted that greater or lower the concentration of KOH or methanol than the optimal values, the reaction either did not fully occur or lead to soap formation.The quality of the biodiesel produced was evaluated by the determinations of important properties such as density, specific gravity, kinematic viscosity, higher heating value, acid value, flash point, pour point, cloud point, combustion point, cold filter plugging point, cetane index, ash content, sulphur content, water content, copper strip corrosion value, distillation temperature and fatty acid composition. The produced biodiesel was found to exhibit fuel properties within the limits prescribed by the latest American Standards for Testing Material (ASTM) and European EN standards.  相似文献   

17.
Effects of particle size on the fast pyrolysis of oil mallee woody biomass   总被引:1,自引:0,他引:1  
This study aims to investigate the effects of biomass particle size (0.18-5.6 mm) on the yield and composition of bio-oil from the pyrolysis of Australian oil mallee woody biomass in a fluidised-bed reactor at 500 °C. The yield of bio-oil decreased as the average biomass particle size was increased from 0.3 to about 1.5 mm. Further increases in biomass particle size did not result in any further decreases in the bio-oil yield. These results are mainly due to the impact of particle size in the production of lignin-derived compounds. Possible inter-particle interactions between bio-oil vapour and char particles or homogeneous reactions in vapour phases were not responsible for the decreases in the bio-oil yield. The bio-oil samples were characterised with thermogravimetric analysis, UV-fluorescence spectroscopy, Karl-Fischer titration as well as precipitation in cold water. It was found that the yields of light bio-oil fractions increased and those of heavy bio-oil fractions decreased with increasing biomass particle size. The formation of pyrolytic water at low temperatures (<500 °C) is not greatly affected by temperature or particle size. It is believed that decreased heating rates experienced by large particles are a major factor responsible for the lower bio-oil yields from large particles and for the changes in the overall composition of resulting oils. Changes in biomass cell structure during grinding may also influence the yield and composition of bio-oil.  相似文献   

18.
The pyrolysis of wood was carried out in an Entrained Flow Reactor at high temperature (650 to 950 °C) and under rapid heating conditions (> 103 K s− 1). The influence of the diameter and initial moisture of the particle, reactor temperature, residence time and the nature of the gaseous atmosphere on the composition of the gaseous products has been characterised. Particle size, between 80-125 and 160-200 μm, did not show any impact. Pyrolysis and tar cracking essentially happen in very short time period: less than 0.6 s; the products yields are only slightly modified after 0.6 s in the short residence times (several seconds) of our experiments. Higher temperatures improve hydrogen yield in the gaseous product while CO yield decreases. Under nitrogen atmosphere, after 2 s at 950 °C, 76% (daf) of the mass of wood is recovered as gases: CO, CO2, H2, CH4, C2H2, C2H4 and H2O. Tests performed under steam partial pressure showed that hydrogen production is slightly enhanced.  相似文献   

19.
High purity multi-walled carbon nanotubes were synthesized from aromatic hydrocarbons (benzene, toluene, xylene and trimethyl benzene) using ferrocene as the source of Fe catalyst. Screening studies of aromatic feeds at 675 °C, residence time of 14 s and Fe/C atom ratio of 1.07%, resulted in feedstock carbon conversion of 20-31%, CNT yield of 19.8-30.5%, and catalyst yield of 5.3-8.3 (g CNT/g catalyst). While the quality of the CNTs as determined by TGA, SEM, TEM and Raman spectroscopy, were high and comparable for different feedstocks; their carbon conversion, CNT yield and catalyst yield differed noticeably. A process optimization study for toluene feed showed that carbon conversion of more than 39%, CNT yield of 38.7% and catalyst yield of 18.3 can be achieved at temperature of 800 °C, Fe/C atom ratio of 0.47%, and residence time of 10-20 s.  相似文献   

20.
Experiments were performed in an entrained-flow reactor to better understand the processes involved in biomass air gasification. Effects of the reaction temperatures (700 °C, 800 °C, 900 °C and 1000 °C), residence time and the equivalence ratio in the range of 0.22-0.34 on the gasification process were investigated. The behavior of biomass gasification was discussed in terms of composition of produced gas. Four parameters, i.e. the low heating value, fuel gas production, carbon conversion and cold gas efficiency were used to evaluate the gasification. The results show that CO, CO2 and H2 are the main gasification products, while hydrocarbons (CH4 and C2H4) are the minor ones. With the increase of the reaction temperature, the concentration of CO decreases, while the concentrations of CO2 and H2 increase. The concentrations of CH4 and C2H4 reach their maximum value when the reaction temperature is 800 °C. The optimal reaction temperature is considered to be 800 °C and the optimal equivalence ratio is 0.28 in that the low heating value of the produced gas, carbon conversion and cold gas efficiency achieve their maximum values. The kinetic parameters of sawdust air gasification are calculated basing on the Arrhenius correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号