首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fibre-optic oxygen (O2) sensor monitoring at a wavelength of 400 nm has been successfully developed for the determination of gaseous O2. Its working principle is based on the contact charge-transfer absorption of N,N-dimethyl-p-toluidine and O2. The response to changes in O2 concentrations is reversible and in good agreement with the Beer-Lambert law. The response and recovery times are 12 and 26 min, respectively. The sensor can detect a wide range of O2 concentrations, ranging from 4.3 to 100% O2. The precision is 1.45% (n=5) in a gas mixture of 95% O2 in N2 and the limit of detection is 4.3% O2 (3σb). The sensor is stable with a 0.53% change in sensitivity per hour. There is a 0.25% °C−1 decrease of the sensitivity of the sensor to O2 in the range 20–34°C. Water vapour and nitrogen dioxide interfere slightly, whereas hydrogen sulphide and hydrogen chloride have moderate interference on the sensor. However, chlorine and sulphur dioxide seriously interfere with the sensor.  相似文献   

2.
LaFEO3 and CaxLa1−xFeO3 ceramic powders have been prepared by the coprecipitation method from La(NO3)3, Fe(NO3)3 and Ca(NO3)2 aqueous solutions. The orthorhombic perovskite phases of LaFeO3 and CaxLa1−xFeO3 are characterized by X-ray diffraction patterns. The sensors fabricated with those powders have high sensitivity to alcohol. Partial substitution of La3+ in LaFeO3 with Ca2+ can enhance the sensitivity of the materials to reducing gases. The resistance of an LaFeO3 sensor in air, vacuum and alcohol-containing air has been measured. Complex impedance spectroscopy has been used to try and analyse the gas-sensing mechanism. According to the experimental results, it can be deduced that the surface adsorptive and lattice oxygen govern the sensing properties of LaFeO3 and CaxLa1−xFeO3 ceramics.  相似文献   

3.
M.  E.  M.B.  A.  L. 《Sensors and actuators. B, Chemical》1997,40(2-3):205-209
Polypyrrole thin films have been deposited onto a glass substrate by the Langmuir-Blodgett technique to fabricate a selective ammonia (NH3) gas sensor. The d.c. electrical resistance of the sensing elements is found to exhibit a specific increase upon exposure to different gases such as NH3, CO, CH4, H2 in N2 and pure O2. The polypyrrole thin-film detector shows a considerable increase of resistance when exposed to NH3 in N2, and negligible response when exposed to comparable concentrations of interfering gases such as CO, CH4, H2 in N2 and pure O2. The calibration curve for NH3 in N2 at room temperature is measured in the concentration range from 0.01 to 1%. The relative change of the electrical resistance is about 10% for the lower detectable limit of 100 ppm of NH3 in N2. The sensitivity of the Langmuir-Blodgett polypyrrole towards ammonia is considerably higher than that of the electrochemical polypyrrole. The fast rise time and the high sensitivity of the detector are reported as a function of number of the polypyrrole layers. Long-term aging tests of the selective NH3 gas sensor are performed.  相似文献   

4.
Simultaneous measurement of total NOx and O2 using two electrochemical methods are demonstrated using metal/metal oxide internal oxygen reference electrode-based sensors at high temperatures. The Pd/PdO-containing reference chamber was sealed within a stabilized zirconia superstructure by a high pressure/temperature plastic deformation bonding method exploiting grain boundary sliding between the ceramic components. Amperometric and potentiometric NOx sensing devices were assembled on the outside of the sensor. Pt-loaded zeolite Y was used to obtain total NOx capability. Both the amperometric and potentiometric type sensors showed total NOx response, with the potentiometric device showing better NOx/O2 signal stability and lower NOx–O2 cross-interference. Since these sensors do not require plumbing for reference air, there is more flexibility in the placement of such sensors in a combustion stream.  相似文献   

5.
This paper reports the quantitative experimental exploration of the performance space of a microfabricated singlet oxygen generator (muSOG). SOGs are multiphase reactors that mix H2O2, KOH, and Cl2 to produce singlet delta oxygen, or O2 (a). A scaled-down SOG is being developed as the pump source for a microfabricated chemical oxygen-iodine laser system because scaling down a SOG yields improved performance compared to the macroscaled versions. The performance of the muSOG was characterized using O2 (a) yield, chlorine utilization, power in the flow, molar flow rate per unit of reactor volume, and steady-state operation as metrics. The performance of the muSOG is measured through a series of optical diagnostics and mass spectrometry. The test rig, which enables the monitoring of temperatures, pressures, and the molar flow rate of O2 (a), is described in detail. Infrared spectra and mass spectrometry confirm the steady-state operation of the device. Experimental results reveal O2 (a) concentrations in excess of 1017 cm-3, O2 (a) yield at the chip outlet approaching 80%, and molar flow rates of 02(a) per unit of reactor volume exceeding 600 times 10-4 mol/L/s.  相似文献   

6.
We report on electrical responses of tungsten oxide thin film ozone sensors based on a tungsten trioxide (WO3)/tin oxide (SiO2)/Si structure with interdigitated Pt electrodes. The influence of O2 concentration in the sputtering gas and working temperature of the sensor are investigated. Sensitivity to ozone increases with O2 content in the sputtering gas. It reaches its highest value for sensors fabricated with 50% O2. For these sensors, the best ozone sensitivity and shortest response and recovery times are obtained at a working temperature of 523 K. Ozone sensitivity is compared to other ozone sensors.  相似文献   

7.
Oxide semiconductors have been examined to develop NOx sensors for exhaust monitoring. Titania doped with trivalent elements, such as Al3+, Sc3+, Ga3+ or In3+, has a good sensitivity and selectivity to NO between 450 and 550 °C, and shows rapid response. A sensor probe for monitoring exhaust NOx has been fabricated. Many kinds of interference gases, such as C3H6, CO and SO2, have been found to have only a slight influence on the sensor response to NO. The influence of O2 and H2O is also negligible, except for the cases of 0% H2O and fuel-rich conditions. In accordance with these results, the sensor probe operates satisfactority in the exhaust gas of various combustion conditions without interference from the various kinds of gas species in the exhaust gases.  相似文献   

8.
Integrated optical sensor chips suitable for high-resolution pH measurements are presented. The pH-sensitive swelling of a polymer membrane is detected by refractometry using a compact multi-channel sensor module. The signal transduction is achieved by means of chirped grating couplers which allow simple yet high functionality sensor modules to be built. The experiments have been performed with high sensitivity replicated polycarbonate TiO2 waveguide sensor chips coated with an ultrathin photopatterned hydrogel membrane having functional groups which reversibly change from the neutral state to a charged state upon acidification. A resolution δpH <±1.1×10−4 in terms of the pH (at pH 7.5) has been obtained in a dual-channel module with size 10×10×10 cm3.  相似文献   

9.
The fast response of undoped and Li-doped TiO2 operating at low temperature to hydrogen and oxygen is investigated. The TiO2 sensors are fabricated using thick-film technique. The prepared materials exhibit the presence of only rutile phase of TiO2 but enlarged crystal lattice parameters were confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) shows that the grain size of the material has not obviously changed with different Li-doping (2–4 mol%), but the undoped is much smaller. Kroger–Vink model indicates that Li mainly substitutes for the lattice point of Ti. Because the material resistance decreases as the oxygen pressure increases, Li-doped samples can be regarded as a p-type semiconductor compared with pure TiO2. The operating temperature of the Li-doped TiO2 samples is found to be lower than that of pure TiO2 in H2 and O2 environment. At less than 3 mol% Li content, the response time of the Li-doped TiO2 gas sensors is much shorter than that of pure TiO2, at the same temperature under both H2 and O2 environment. Moreover, the sample of 3 mol% Li-doping exhibits the best response characteristics. The response mechanism is suggested to arise from the conduction holes ionized by Li and the surface potential barrier change in different gas environments.  相似文献   

10.
Ch.Y.  M.  Th.  C.-C.  V.  Th.  O. 《Sensors and actuators. B, Chemical》2008,130(2):589-593
In2O3 nanoparticles were deposited by low-temperature metal organic chemical vapor deposition. The response of 10-nm thick In2O3 particle containing layers to NOx and O2 gases is investigated. The lowest detectable NOx concentration is 200 ppb and the sensor performance is strongly dependent on the gas partial pressure as well as on the operating temperature. The sensor response towards 200 ppm of NOx is found to be above 104. Furthermore, the cross-sensitivity against O2 is very low, demonstrating that the In2O3 nanoparticles are very suitable for the selective NOx detection.  相似文献   

11.
Pt-loaded metal oxides [WO3/ZrO2, MOx/TiO2 (MOx = WO3, MoO3, V2O5), WO3 and TiO2] equipped with interdigital Au electrodes have been tested as a NOx (NO and NO2) gas sensor at 500 °C. The impedance value at 4 Hz was used as a sensing signal. Among the samples tested, Pt-WO3/TiO2 showed the highest sensor response magnitude to NO. The sensor was found to respond consistently and rapidly to change in concentration of NO and NO2 in the oxygen rich and moist gas mixture at 500 °C. The 90% response and 90% recovery times were as short as less than 5–10 s. The impedance at 4 Hz of the present device was found to vary almost linearly with the logarithm of NOx (NO or NO2) concentration from 10 to 570 ppm. Pt-WO3/TiO2 showed responses to NO and NO2 of the same algebraic sign and nearly the same magnitude, while Pt/WO3 and WO3/TiO2 showed higher response to NO than NO2. The impedance at 4 Hz in the presence of NO for Pt-WO3/TiO2 was almost equal at any O2 concentration examined (1–99%), while in the case of Pt/WO3 and WO3/TiO2 the impedance increased with the oxygen concentration. The features of Pt-WO3/TiO2 are favorable as a NOx sensor that can monitor and control the NOx concentration in automotive exhaust. The effect of WO3 loading of Pt-WO3/ZrO2-based sensor is studied to discuss the role of surface W-OH sites on the NOx sensing.  相似文献   

12.
A light-addressable potentiometric sensing (LAPS) system has been applied to construct an oxygen sensor using a suspended-gate electrode. The sensor principally consists of an MIS structure, i.e., suspended gate/air gap/LaF3/SiO2/Si. The use of the suspended gate makes it possible to realize a contactless sensing system, which provides a flexible structure to integrate multiple sensing elements on a single-chip semiconductor surface. The sensor shows a stable response at room temperature to oxygen partial-pressure changes in the range 0.25-1.0 atm. The fabrication conditions of the LaF2 film are also discussed.  相似文献   

13.
S.  P.  J. -L.  F.  S.  G.  Y.  J.  O. 《Sensors and actuators. A, Physical》2004,110(1-3):294-300
This paper describes a compact and low cost micro-opto-electro-mechanical displacement sensor. Our purpose is the fabrication of a long range, nanometer resolved encoder using a standard CMOS technology, in order to integrate the optical metrology system (photodiodes, analog and digital circuits) on a single chip. We introduce the interferometric linear encoder principle using diffraction gratings; then we present results of optical and electrical characterization of an optoASIC including photodiodes and associated electronic integrated on a standard 0.6 μm CMOS process. This CMOS circuitry is then included inside of a prototype of linear displacement encoder using the principle of diffraction gratings in reflection. Finally, we present the fabrication of micrometer and sub-micrometer diffraction gratings etched in silicon material, in order to obtain a higher encoder integration.  相似文献   

14.
This paper reports the design, fabrication, and proof of concept demonstration of a singlet oxygen generator (SOG) that operates on the microscale. The micro-SOG (muSOG) chip is implemented in a three-wafer stack using deep reactive ion etching (DRIE) and wafer bonding as key technologies. The device creates singlet delta oxygen (O2(a)) in an array of packed-bed reaction channels fed by inlet manifolds with pressure drop channels that ballast the flow. An integrated capillary array separates the liquid and gas by-products, and a microscale heat exchanger removes excess heat of reaction. The fabrication process and package are designed to minimize collisional losses and wall deactivation of O2(a). The design, fabrication, and package of the device are documented. Proof of concept demonstration of the device is given by optical emission measurements of the spontaneous decay of the O2 (a) molecule into its triplet state and by the observation of the emission from dimol pairs of O2 (a) molecules.  相似文献   

15.
A solid composite electrolyte with high proton conductivity based on antimonium pentoxide with additives of phosphoric acid has been obtained. A potentiometric solid-state gas sensor using this electrolyte has been developed for detecting small amounts of hydrogen (10–2000 ppm) in gas mixtures at ambient temperature. The sensor consists of the reference electrode: Ag or Ag/(Ag + Ag2SO4), the solid composite electrolyte and H2-sensitive electrode: Pt or Pd. The electromotive force (e.m.f.) of the sensor varies logarithmically with H2 concentration for hydrogen partial pressures in the range 100–2000 ppm and depends on the oxygen partial pressure. The slope of e.m.f.-log(pH2) dependence is 170 and 200 mV for Pt and Pd, respectively, which exceeds the Nernst value, presumably due to the formation of a mixed potential. The sensor can operate at a wide range (20–95%) of a relative humidity.  相似文献   

16.
J.  G.  R.  B. 《Sensors and actuators. B, Chemical》2000,70(1-3):177-181
The electronic properties of the space charge layer of the tin dioxide thin films, prepared by the laser-induced chemical vapour deposition (L-CVD), have been studied using X-ray photoelectron spectroscopy (XPS) and photoemission yield spectroscopy (PYS). Based on the analysis of Sn3d5/2 XPS peak, the influence of exposition to molecular oxygen O2 and hydrogen H2 on the stoichiometry of the L-CVD deposited SnO2 thin films, as well as the interface Fermi level position in the band gap, have been determined and compared to the variation of the work function determined from the threshold of the ex situ recorded photoemission yield spectra. The observed changes of the interface Fermi level position and the work function upon adsorption/desorption of O2 and H2 were attributed to decrease/increase of the concentration of oxygen vacancies in the near surface region.  相似文献   

17.
A miniature Clark-type oxygen sensor has been integrated with a microstructure using a novel fabrication technique. The oxygen chip consists of a glass substrate with a three-electrode configuration, which is separated and connected by a groove, and a poly(dimethylsiloxane) (PDMS) container with an immobilized PDMS oxygen-permeable membrane. The assembly of the different substrates only uses the O2 plasma bonding technique, and the fabrication temperatures do not exceed 95 °C. Characteristics of the miniature sensor include the fastest response time of 6.8 s, good linearity with a correlation coefficient of 0.995, and a long lifetime of at least 60 h. The present miniature Clark oxygen sensor can be readily integrated with a microfluidic system to form a μ-TAS.  相似文献   

18.
19.
Filling trenches in silicon using phosphosilicate glass (PSG) provides many possibilities for novel device structures for sensors and actuators. This paper describes a plasma planarization technique that provides fully planarized PSG filled silicon trenches for sensor applications. The technique consists of planarizing the substrate using two photoresist layers and plasma etching-back. The lower resist layer is the AZ5214 image reversal resist, which is patterned and then thermally cured. The upper resist layer is a global HPR204 coating. The plasma etching-back is carried out using CHF3/C2F 6 gas mixture with an O2 addition. It is shown that by using the image reversal photoresist approach, fully planarized surface coating can be obtained without resorting to an additional mask. By adding 25 sccm (14%) O2 into the 137 sccm CHF3+18 sccm C2F6 gas mixture, the etch rates for the photoresist and PSG can be matched. Process optimization for the two layer resist coating and plasma etching is discussed  相似文献   

20.
ZnFe2O4 tubes with mesoscale dimensions were synthesized by pyrolysis of polyvinyl alcohol (PVA)-mediated xerogel using porous alumina as a template. The product formation was analyzed by X-ray powder diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetry and differential thermal analysis (TG–DTA), scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). This synthetic method yielded open-ended ZnFe2O4 tubes with a typical length of several micrometers, an outer diameter of about 200 nm, and an average thin wall of 20 nm composed of small nanocrystals. Application of the ZnFe2O4 tubes as gas sensor materials displayed low-energy consumption and high sensitivity to organics such as ethanol and acetone, due to the unique interconnected channel structure and small crystal size of the tubes, showing their potential application in sensor areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号