首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triaxial Compression of Sand Reinforced with Fibers   总被引:3,自引:0,他引:3  
Results from drained triaxial compression tests on specimens of fiber-reinforced sand are reported. It is evident that the addition of a small amount of synthetic fibers increases the failure stress of the composite. This effect, however, is associated with a drop in initial stiffness and an increase in strain to failure. Steel fibers did not reduce initial stiffness of the composite. The increase in failure stress can be as much as 70% at a fiber concentration of 2% (by volume) and an aspect ratio of 85. The reinforcement benefit increases with an increase in fiber concentration and aspect ratio, but it also depends on the relative size of the grains and fiber length. A larger reinforcement effect in terms of the peak shear stress was found in fine sand, compared to coarse sand, when the fiber concentration was small (0.5%). This trend was reversed for a larger fiber concentration (1.5%). A model for prediction of the failure stress in triaxial compression was developed. The failure envelope has two segments: a linear part associated with fiber slip, and a nonlinear one related to yielding of the fiber material. The analysis indicates that yielding of fibers occurs well beyond the stress range encountered in practice. The concept of a macroscopic internal friction angle was introduced to describe the failure criterion of a fiber-reinforced sand. This concept is a straightforward way to include fiber reinforcement in stability analyses of earth structures.  相似文献   

2.
The response of a saturated fine sand (Nevada sand No. 120) with relative density Dr ≈ 70% in drained and undrained conventional triaxial compression and extension tests and undrained cyclic shear tests in a hollow cylinder apparatus with rotation of the stress directions was studied. It was observed that the peak mobilized friction angle for this dilatant material was different in undrained and drained tests; the difference is attributed to the fact that the rate of dilation is smaller in an undrained test than it is in a drained test. Consistent with the findings of others, the material is more resistant to undrained cyclic loading for triaxial compression than for triaxial extension. In rotational shear tests in which the second invariant of the deviatoric stress tensor is held constant, the shear stress path (after being normalized by the mean normal effective stress) approached an envelope that is comparable but not identical in shape to a Mohr-Coulomb failure surface. As the stress path approached the envelope, the shear end deviatoric strains continued to increase in an unsymmetrical smooth spiral path. During the rotational shear tests, the direction of the deviatoric strain-rate vector (deviatoric strain increment divided by the magnitude of change in Lode angle) was observed to be about midway between the deviatoric stress increment vector and the normal to a Mohr-Coulomb failure surface in the deviatoric plane. The stress ratio at the transition from contractive to dilative behavior (i.e., “phase transformation”) was also observed to depend on the direction of the stress path; therefore this stress ratio is not a fundamental property. Results from torsional hollow cylinder tests with rotation of stress directions are presented in new graphical formats to help understand and interpret the fundamental soil behavior.  相似文献   

3.
The significance of material cross anisotropy in sands is underscored and experimentally evaluated in a series of true triaxial tests on Santa Monica beach sand in a cubical device. Failure patterns, initiation and development of shear banding, and complete stress–strain behavior are described for the entire range of the Lode angle under general three-dimensional loading conditions. Localized failure was found to govern the ultimate resistance of the sand for intermediate values of parameter b = (σ2?σ3)/(σ1?σ3) in each of the three sectors of the octahedral plane. Variations of the friction angle are fully described and show its significant dependence on the inherent cross-anisotropic material structure.  相似文献   

4.
A laboratory investigation was conducted in order to develop a new grout based on fly ash produced in Greece. Ptolemaida fly ash was selected because of its hydraulic properties and was pulverized (Blaine specific surface over 8,300 cm2/gr, D15 = 1.3?μm, D50 = 6?μm, and D85 = 20?μm) in order to improve its groutability and its hydraulic activity. Pulverized fly ash (PFA) suspensions with selected additives have properties comparable to those of ordinary and microfine cement suspensions. Clean sands were injected using two specially constructed devices. Hydraulic conductivity, unconfined compression, and UU and CU-PP triaxial compression tests were conducted on grouted sand specimens. Coarse sands can be grouted effectively with PFA suspensions. Conventional groutability ratios were found to overestimate the groutability of these suspensions. Grouting with PFA suspensions reduces sand hydraulic conductivity by up to seven orders of magnitude and yields unconfined compression strength values up to 3,000 kPa. The Mohr–Coulomb failure criterion represents the behavior of grouted sand with cohesion values ranging from 280 to 450 kPa and angle of internal friction slightly higher than that of the sands.  相似文献   

5.
An investigation into the geotechnical properties specific to assessing the stability of weakly and moderately cemented sand cliffs is presented. A case study from eroding coastal cliffs located in central California provides both the data and impetus for this study. Herein, weakly cemented sand is defined as having an unconfined compressive strength (UCS) of less than 100 kPa, and moderately cemented sand is defined as having UCS between 100 and 400 kPa. Testing shows that both materials fail in a brittle fashion and can be modeled effectively using linear Mohr-Coulomb strength parameters, although for weakly cemented sands, curvature of the failure envelope is more evident with decreasing friction and increasing cohesion at higher confinement. Triaxial tests performed to simulate the evolving stress state of an eroding cliff, using a reduction in confinement-type stress path, result in an order of magnitude decrease in strain at failure and a more brittle response. Tests aimed at examining the influence of wetting on steep slopes show that a 60% decrease in UCS, a 50% drop in cohesion, and 80% decrease in the tensile strength occurs in moderately cemented sand upon introduction to water. In weakly cemented sands, all compressive, cohesive, and tensile strength is lost upon wetting and saturation. The results indicate that particular attention must be given to the relative level of cementation, the effects of groundwater or surficial seepage, and the small-scale strain response when performing geotechnical slope stability analyses on these materials.  相似文献   

6.
Strain Rate, Creep, and Stress Drop-Creep Experiments on Crushed Coral Sand   总被引:2,自引:0,他引:2  
The part of sand behavior that is affected by time, such as creep, relaxation, and loading rate effects are not similar to those observed for clay. To throw more light on the time effects in sand, many series of drained triaxial compression experiments have been performed on crushed coral sand. These tests were all performed with a constant effective confining pressure of 200?kPa. The test series included experiments with specimens loaded at five different strain rates with a 256-fold ratio between the extreme rates, tests with sudden changes in strain rate from slow to fast and vice versa, and tests in which axial and volumetric creep strains were observed at stress differences of 500, 700, and 900?kPa. Creep creates structuration and this has to be overcome to produce further plastic straining. Experiments were also performed in which the stress difference was dropped quickly from three different values of 500, 700, and 900?kPa followed by creep. In these stress drop-creep tests five different magnitudes of stress drops were employed: 0, 100, 200, 300, and 400?kPa. The results involving conventional creep effects and stress drop-creep effects are presented and analyzed.  相似文献   

7.
Sand dilates with shearing at a rate that increases with increasing relative density (DR) and decreases with increasing effective confining stress (σc′). The peak friction angle of a sand depends on its critical-state friction angle and on dilatancy. In this paper, we develop a simple correlation between peak friction angle, critical-state friction angle, and dilatancy based on triaxial compression and plane-strain compression test data for sand for a range of confining pressures from very low levels to approximately 196 kPa.  相似文献   

8.
This paper demonstrates the use of a centrifuge modeling technique in studying slope instability. The slope models were prepared from sand, and sand mixed with 15 and 30% fines by weight, compacted at optimum water content. The validity of the modeling technique was confirmed using slope models of different heights, inclinations, and soil types. The soil behavior was studied under triaxial and plane strain conditions, and the extended Mohr-Coulomb failure criterion was found relevant for expressing the strength of unsaturated compacted soil based on the angle of internal friction and apparent cohesion. The Bishop’s circular mechanism, together with the extended Mohr-Coulomb failure criterion, was able to simulate the slope failure reasonably well. The rainfall of different intensities was then induced on the 60° stable slopes of sand with 15% fines. It was found that the failure of slope under rainfall may be interpreted as a reduction in apparent cohesion. The centrifuge tests also allowed the rainfall intensity-duration threshold curve (local curve) to be generated for the test slopes, and the accumulated rainfall corresponded well to some of the reported field observations.  相似文献   

9.
Engineering Behavior of a Sand Reinforced with Plastic Waste   总被引:7,自引:0,他引:7  
Unconfined compression tests, splitting tensile tests, and saturated drained triaxial compression tests with local strain measurement were carried out to evaluate the benefit of utilizing randomly distributed polyethylene terephthalate fiber, obtained from recycling waste plastic bottles, alone or combined with rapid hardening Portland cement to improve the engineering behavior of a uniform fine sand. The separate and the joint effects of fiber content (up to 0.9 wt?%), fiber length (up to 36 mm), cement content (from 0 to 7 wt?%), and initial mean effective stress (20, 60, and 100 kN/m2) on the deformation and strength characteristics of the soil were investigated using design of experiments and multiple regression analysis. The results show that the polyethylene terephthalate fiber reinforcement improved the peak and ultimate strength of both cemented and uncemented soil and somewhat reduced the brittleness of the cemented sand. In addition, the initial stiffness was not significantly changed by the inclusion of fibers.  相似文献   

10.
Characterization of Failure in Cross-Anisotropic Soils   总被引:3,自引:0,他引:3  
Drained true triaxial tests on dense Santa Monica Beach sand deposited with a cross-anisotropic fabric have been performed to study the failure condition in the principal stress space. The failure surface was assumed to be symmetric around the vertical axis (on the octahedral plane of the principal stress space), but varying as a function of the Lode angle. Data from previously performed consolidated-undrained true triaxial tests on San Francisco Bay Mud and data from triaxial compression, triaxial extension, and plane strain tests on Toyoura sand showed similar behavior in terms of effective stresses. A three-dimensional failure criterion is proposed for characterization of failure in cross-anisotropic soils, under commonly occurring conditions when loading and depositional directions coincide and no significant rotation of principal stresses occur. This cross-anisotropic criterion is developed using a coordinate rotation of the principal stress space and utilization of an existing isotropic failure formulation. Derivation of the three required parameters is explained and illustrated. The proposed criterion is compared with various experimental results; and it is demonstrated that the failure criterion for cross-anisotropic soils captures the experimental behavior with good accuracy.  相似文献   

11.
Plate Load Test on Fiber-Reinforced Soil   总被引:4,自引:0,他引:4  
This technical note discusses the load–settlement response from two steel plate load tests (0.3 m diameter, 25 mm thick) carried out on a thick homogeneous stratum of compacted sandy soil, reinforced with polypropylene fibers, as well as on the same soil without the reinforcement. In addition to the field test program, laboratory triaxial compression tests were performed to determine the static stress–strain response of the compacted sandy soil reinforced with randomly distributed polypropylene fibers. The laboratory test results showed that the reinforcement changed dramatically the stress–strain behavior at very large strains. The strength was found to increase continuously at a constant rate, regardless of the confining pressure applied, not reaching an asymptotic upper limit, even at axial strains as large as 25%. The plate load test on the soil–fiber stratum was performed to relatively high pressures, and gave a noticeable stiffer response than that carried out on the nonreinforced stratum.  相似文献   

12.
State-Dependent Strength of Sands from the Perspective of Unified Modeling   总被引:2,自引:0,他引:2  
This paper discusses the state-dependent strength of sands from the perspective of unified modeling in triaxial stress space. The modeling accounts for the dependence of dilatancy on the material internal state during the deformation history and thus has the capability of describing the behavior of a sand with different densities and stress levels in a unified way. Analyses are made for the Toyoura sand whose behavior has been well documented by laboratory tests and meanwhile comparisons with experimental observations on other sands are presented. It is shown that the influence of density and stress level on the strength of sands can be combined through the state-dependent dilatancy such that both the peak friction angle and maximum dilation angle are well correlated with a so-called state parameter. A unique, linear relationship is suggested between the peak friction angle and the maximum dilation angle for a wide range of densities and stress levels. The relationship, which is found to be in good agreement with recent experimental findings on a different sand, implies that the excess angle of shearing due to dilatancy in triaxial conditions is less than 40% of that in plane strain conditions. A careful identification of the deficiency of the classical Rowe’s and Cam-clay’s stress–dilatancy relations reveals that the unique relationship between the stress ratio and dilatancy assumed in both relations does not exist and thereby obstructs unified modeling of the sand behavior over a full range of densities and stress levels.  相似文献   

13.
Failure and Dilatancy Properties of Sand at Relatively Low Stresses   总被引:1,自引:0,他引:1  
Analysis of geotechnical problems concerned by low confinement such as design of shallow foundations and analysis of slope stability and soil liquefaction requires modeling of the soil behavior at low stresses. This note includes a laboratory study of the behavior of Hostun RF sand at low cell pressure (20–50?kPa). Isotropic and triaxial compression drained tests were performed. Drained tests show that both failure and dilatancy angles at low stresses are stress dependent. The contractive/dilative phase transition is observed for loose sand, which may result from the overconsolidated nature of this sand for low values of cell pressure.  相似文献   

14.
Behavior of a Fiber-Reinforced Bentonite at Large Shear Displacements   总被引:1,自引:0,他引:1  
The behavior of a polypropylene fiber-reinforced bentonite was evaluated at large shear displacements by a series of ring shear tests carried out at normal stresses varying between 20 and 400?kPa. Bentonite/polypropylene fiber composites were molded at an initial moisture content of 170%, with fiber lengths of 12 or 24?mm. The fiber thickness was 0.023?mm and the fiber content was either 1.5 or 3% by dry weight. The inclusion of randomly distributed fibers increased the peak shear strength of the bentonite, but the increase in strength deteriorated at large displacements and the residual strengths of both the nonreinforced and fiber-reinforced bentonite were similar. The peak shear strength was found to increase both with increasing fiber length and content. The fibers were exhumed after testing and it was found that the fibers had both extended and broken, with a predominance of broken fibers.  相似文献   

15.
This study presents the results of a detailed geotechnical evaluation of six stabilized dredged material (SDM) blends incorporating various combinations of lime, cement kiln dust, high alkali and slag cements, and Class F fly ash. The dredged material classified as CH/OH soil with an in situ moisture content (MC) of approximately 130% and void ratio of 3.35. Mix designs and unconfined compression strength tests were completed for each SDM blend based on 3-day mellowing characteristics. Compacted dry densities were on the order of 7.8–11.2?kN/m3 (49–71?lb/ft3), with MCs on the order of 34–73%. Peak effective friction angles ranged from 20–50° with cohesion intercepts on the order of 30–235 kPa (4–34?lb/in.2) using a maximum stress obiliquity criterion. Postpeak effective friction angles (15% axial strain) were routinely in excess of 40° with low cohesion (<40?kPa; 6?lb/in.2). One sample exhibited very strong soil-fabric effects (cohesion) having an effective friction angle of only approximately 9°, but cohesion on the order of 450 kPa (65?lb/in.2). Negligible consolidation of a 28-day cured sample was measured. Also, contrary to expectations based on the high sulfate contents (10,000–30,000 mg/kg) of the SDM blends, negligible swell (<1%) was measured in five of six SDM blends. The main finding of this research is the SDM blends exhibit the strength, compressibility, and bulking characteristics that make them favorable for large fill applications and subgrade improvement applications at costs equivalent to or less than conventional construction materials.  相似文献   

16.
Shear Strength of Municipal Solid Waste   总被引:5,自引:0,他引:5  
A comprehensive large-scale laboratory testing program using direct shear (DS), triaxial (TX), and simple shear tests was performed on municipal solid waste (MSW) retrieved from a landfill in the San Francisco Bay area to develop insights about and a framework for interpretation of the shear strength of MSW. Stability analyses of MSW landfills require characterization of the shear strength of MSW. Although MSW is variable and a difficult material to test, its shear strength can be evaluated rationally to develop reasonable estimates. The effects of waste composition, fibrous particle orientation, confining stress, rate of loading, stress path, stress-strain compatibility, and unit weight on the shear strength of MSW were evaluated in the testing program described herein. The results of this testing program indicate that the DS test is appropriate to evaluate the shear strength of MSW along its weakest orientation (i.e., on a plane parallel to the preferred orientation of the larger fibrous particles within MSW). These laboratory results and the results of more than 100 large-scale laboratory tests from other studies indicate that the DS static shear strength of MSW is best characterized by a cohesion of 15?kPa and a friction angle of 36° at normal stress of 1?atm with the friction angle decreasing by 5° for every log cycle increase in normal stress. Other shearing modes that engage the fibrous materials within MSW (e.g., TX) produce higher friction angles. The dynamic shear strength of MSW can be estimated conservatively to be 20% greater than its static strength. These recommendations are based on tests of MSW with a moisture content below its field capacity; therefore, cyclic degradation due to pore pressure generation has not been considered in its development.  相似文献   

17.
Yielding of Microstructured Geomaterial by Distinct Element Method Analysis   总被引:1,自引:0,他引:1  
The purpose of this paper is to present macro- and micro-study on the yielding of microstructured geomaterials by numerical experiments. This target is achieved by carrying out 63 one-dimensional and biaxial compressions tests on an idealized bonded geomaterial with an extension of distinct element method, into which bond contact models proposed were implemented. Numerical results indicate that: (a) preconsolidated pressure appears to attribute to bond and looseness in the geomaterials, and an increase in void ratio leads to a decrease in yielding stress in one-dimensional tests; (b) an increase in bonding strength at interparticle contacts results in an increase in yielding stress and cohesion, and an internal friction angle that is smaller than the critical state value; (c) the observed first-yielding (initiation of bond breakage) is stress path dependent, and gross-yield (defined with respect to volumetric strain) of microstructured geomaterials is evidently related to bond breakage.  相似文献   

18.
This paper presents the results of a research program of strip and circular footings resting on dry dense sand. The scale effect on the bearing capacity and the shape factor s;gg of the footings is investigated numerically and experimentally. The footings are analyzed using the method of characteristics. A wedge failure mechanism has been adopted. Triaxial compression tests conducted under confining pressures up to 2,500 kPa show that the friction angle of dense sand decreases with stress level. The stress-dependent friction angle of soil is adopted in the characteristics analysis. The numerical results indicate that the bearing capacity increases exponentially with footing size. With increasing footing size, the bearing capacity factor N;gg is reduced, while the shape factor s;gg is increased. Centrifuge tests of strip and circular footings with dimensions up to the equivalent of 7 m have been conducted. The experimental work verified the numerical analysis through the consistency of results.  相似文献   

19.
A simplified method for estimating the ultimate bearing capacity of surface footings on sand is described with special attention to the dependency of the angle of internal friction of sand on confining stress. An extended slip line method is developed, in which the dependency of the angle of internal friction on the confining stress is formulated from results of conventional triaxial compression tests for various sands. Based on results from a comprehensive series of calculations employing the extended slip line method, the writers reappraise size effects on bearing capacity and investigate the relationship between strength parameters of sand and size effects on bearing capacity. A modified formula and several diagrams that provide a simple estimation method are proposed to consider size effects on bearing capacity. A comparison between estimations using the formula and ultimate bearing capacities measured from several series of centrifuge tests demonstrates the practicability of the proposed method for both strip and circular footings.  相似文献   

20.
Carbon fiber composites that utilize flattened, large tow yarns in woven or braided forms are being used in many aerospace applications. The complex fiber architecture and large unit cell size in these materials present challenges for both understanding the deformation process and measuring reliable material properties. In this paper composites made using flattened 12k and 24k (referring to the number of fibers in the fiber tow) standard modulus carbon fiber yarns in a 0°/+60°/?60° triaxial braided architecture are examined. Standard straight-sided tensile coupons were tested with the 0° axial braid fibers either parallel to (axial tensile test) or perpendicular to (transverse tensile test) the applied tensile load. The nonuniform surface strain resulting from the triaxial braided architecture was examined using photogrammetry. Local regions of high strain concentration were examined to identify where failure initiates and to determine the local strain at the time of failure initiation. Splitting within fiber bundles was the first failure mode observed at low to intermediate strains. For axial tensile tests the splitting was primarily in the ±60° bias fibers, which were oriented 60° to the applied load. At higher strains in the axial tensile test, out-of-plane deformation associated with localized delamination between fiber bundles or damage within fiber bundles was observed. For transverse tensile tests, the splitting was primarily in the 0° axial fibers, which were oriented transverse to the applied load. The initiation and accumulation of local damage caused the global transverse stress-strain curves to become nonlinear and caused failure to occur at a reduced ultimate strain for both the axial and transverse tensile tests. Extensive delamination at the specimen edges was also observed. Modifications to the standard straight-sided coupon geometry are needed to minimize these edge effects when testing the large unit cell type of material examined in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号