首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
在镁合金表面制备了化学镀镍-磷合金和脉冲电镀锌-镍合金组合镀层。采用扫描电镜、能谱仪考察了镁合金化学镀N i-P合金和电镀锌-镍合金组合镀层的形貌和成分。结果表明,组合镀层表面均匀、致密、无明显缺陷。采用电化学测试系统对组合镀层进行了动电位扫描极化曲线测试。研究了镀层腐蚀后的表面形貌和成分。结果表明,在腐蚀介质中,电镀锌-镍合金层首先发生腐蚀,之后发生化学镀镍层的腐蚀,电镀锌-镍合金层不仅对化学镀镍底层的腐蚀起到机械保护作用,还作为牺牲阳极起到电化学保护作用,因此延缓了腐蚀介质对镁合金基体的腐蚀。  相似文献   

2.
为了提高毛化特征轧辊的耐磨性,在制造9Cr2Mo钢轧辊表面电沉积40μm凸包状毛化铬镀层。通过电化学测试和盐雾试验研究了镀铬层和9Cr2Mo钢基体的腐蚀行为。电化学测试表明,镀铬层的耐蚀性明显优于基体。扫描电镜观测表明,经盐雾试验51 h的基体出现大量腐蚀产物FeO,而镀铬层腐蚀产物细小且集中在表面裂纹附近,主要成分同样为FeO。镀铬层截面金相观察表明,盐雾通过铬层裂纹进入镀层和基体界面产生腐蚀,腐蚀产物通过裂纹通道扩散出来。  相似文献   

3.
在轧辊用9Cr2Mo钢表面电沉积凸包状毛化铬层,并在毛化铬层与钢基体之间引入缓冲镍层。采用扫描电镜表征了镀铬钢和镀镍/铬钢表面镀层的表面形貌和截面形貌。通过电化学测量和中性盐雾(NSS)试验研究了缓冲镍层的引入对毛化铬镀层腐蚀行为的影响。结果表明,镀镍/铬钢的电化学腐蚀倾向更小。NSS试验后,镀铬钢表面有大量腐蚀产物堆积,其主要成分为FeO和少量铬的氧化物。铬镀层中贯穿性裂纹的存在使得腐蚀介质可以渗透其内部并侵蚀钢基体,产生的腐蚀产物可通过裂纹扩散至镀层表面。相对而言,镀镍/铬钢中生成的腐蚀产物较少,主要为铬的氧化物。由此可见,缓冲镍层的引入通过隔绝腐蚀介质通道,有效抑制了腐蚀产物的形成,进而改善凸包状毛化铬镀层的耐蚀性。  相似文献   

4.
对铝合金表面非平衡磁控溅射沉积类石墨镀层,采用极化曲线测试和质量损失方法,分析了镀层的耐蚀性;利用扫描电子显微镜对镀层腐蚀前后的微观形貌进行了观察。结果表明,铝合金表面磁控溅射类石墨镀层由铬打底层和碳工作层组成。镀层组织细小,均匀致密,类石墨镀层可以提高铝合金的耐蚀性。随基体负偏压增大,铝合金试样的耐蚀性增加,当基体为-120 V偏压时,铝合金基体的自腐蚀电位由-0.452 V提高到-0.372 V,腐蚀电流由10.62 m A减小到3.67 m A。在Na Cl溶液中进行浸泡试验后,类石墨镀层仅发生了部分点蚀,可很好地保护铝合金基体。  相似文献   

5.
采用阴极电弧离子镀技术在1Cr13不锈钢表面制备了ZrN梯度层和Zr/ZrN多层膜,并用电化学腐蚀方法和中性盐雾法检测了1Cr13基体、ZrN梯度层和Zr/ZrN多层膜的耐腐蚀性能.结果表明:Zr/ZrN多层膜和ZrN梯度层均能提高1Cr13基体的抗腐蚀能力,而Zr/ZrN多层膜的效果更明显:镀层的内部缺陷(如微孔)和液滴导致薄膜发生孔蚀、隙缝腐蚀和电偶腐蚀;镀层保护的实质是物理屏障作用,细化晶粒、减少膜层中的液滴及针孔等缺陷能显著提高薄膜的抗腐蚀性能.  相似文献   

6.
在硫酸盐三价铬电沉积体系中,通过赫尔槽实验对不同络合剂含量进行了筛选,得到络合剂最佳含量配比为甲酸铵80 g/L、草酸铵20 g/L以及尿素30 g/L,最佳电流密度范围为5.11 A/dm2~20.68 A/dm2;通过循环伏安曲线和阴极极化曲线分析三价铬电沉积机理,发现三价铬的沉积过程分两步进行:第一步为Cr3++e→Cr2+,过程不可逆;第二步为Cr2++2e→Cr,可逆;草酸铵会增大阴极极化,甲酸铵和尿素会降低阴极极化;电沉积20 min得到的铬镀层,XPS分析表面镀层由单质Cr、Cr2O3及Cr(OH)3构成;微观结构观测发现,随着电沉积时间增加,镀层由表面平整形貌逐渐转变为瘤状结构形貌;镀层呈现明显的(110)择优取向;电化学研究表明,相比20 min铬镀层,5 min铬镀层的耐蚀性较好,腐蚀电位由-0.6377 V提高至-0.5633 V,腐蚀电流由6.1030×10-6 A/...  相似文献   

7.
采用电沉积方法在铁基体表面制备Ni-Fe-PTFE复合镀层。利用扫描电子显微镜分析镀层的微观形貌,通过XRD对镀层的相组成进行分析,利用电化学测试系统测定复合镀层在质量分数为3.5%的NaCl溶液中的极化曲线和交流阻抗谱。结果表明:当电流密度为5A/dm2时,镀层结晶细致、均匀,其自腐蚀电位最正,具有较好的耐腐蚀倾向。  相似文献   

8.
《广东化工》2021,48(16)
为了减弱腐蚀,增强基体的使用寿命,以316L不锈钢片为基体,采用电沉积法制备了Ni-Co合金镀层。使用扫描电镜对镀层的微观形貌进行表征,利用VersaSTAT3电化学工作站测试镀层在3.5%的NaCl溶液中的腐蚀电流密度。研究了不同主盐浓度、镀液温度及电流密度对合金镀层性能的影响规律。结果表明,电镀液中镍盐质量浓度为128 g/L时,钴盐质量浓度为115 g/L,镀液温度为55℃,p H值为4.5,电流密度为1.0 A/dm~2,腐蚀电流密度为6.13×10~(-12)A/cm~2时,所得Ni-Co合金镀层的耐腐蚀效果最佳。  相似文献   

9.
研究了三种前处理工艺对钛合金化学镀镍的影响,通过扫描电子显微镜、弯折试验仪、维氏硬度计、电化学曲线对化学镀镍层的微观形貌、结合力、硬度、耐蚀性进行了表征与分析。结果表明:采用浸蚀/浸锌前处理工艺获取的化学镀镍层结晶最致密,孔隙最少,与基体表面的结合力最好,镀层的硬度可达534 HV,镀层自腐蚀电位为-0.3980 V,自腐蚀电流密度为2.927μA·cm-2,其耐蚀性优于其他两种前处理工艺获得的镀层。  相似文献   

10.
以海港货运列车联接件使用的材料35CrMo钢为基体,在其表面制备了Ni-Al_2O_3纳米镀层。通过周期性浸润腐蚀试验模拟海洋大气腐蚀,分别研究了纳米镀层和基体的耐海洋大气腐蚀性能,得到了各自的腐蚀失重曲线、自腐蚀电位及自腐蚀电流密度。与基体相比,相同实验条件下纳米镀层的腐蚀失重更低,周期性浸润腐蚀试验后的总腐蚀失重为3.76×10~(-2) mg/mm~2。纳米镀层的自腐蚀电位为-212mV,比基体的自腐蚀电位正移了45mV;自腐蚀电流密度为3.25×10~(-5)A/cm~2,比基体的自腐蚀电流密度下降了21.5%。纳米镀层表面腐蚀比较均匀,表现出比基体更好的耐海洋大气腐蚀性能。  相似文献   

11.
《Ceramics International》2020,46(14):22404-22418
AISI 316L steel is often used in materials applied toward nuclear power but are subjected to pitting corrosion in a marine environment. In this study, (Cr, W, Al, Ti, Si)N multilayer coatings were deposited using multi-arc ion plating on the surface of non-nitrided and nitrided AISI 316L steel. The microstructure and corrosion resistance of four different systems were investigated, namely, (i) untreated AISI 316L steel, (ii) plasma nitrided (PN), (iii) coated on an untreated matrix (coating) only, and (iv) coated on nitrided (hybrid) specimens. The phase structures, morphologies, and compositions of the different specimens were characterized using X-ray diffraction, transmission electron microscope, Atomic Force Microscope, scanning electron microscope, X-ray photoelectron spectroscopy, and energy dispersive x-ray spectroscopy. The results show that a thin CrWAlTiSiN multilayer coating, approximately 2.3 μm in thickness, is deposited on the surface of an ~12 μm nitrided layer. Potentio-dynamic polarization and electrochemical impedance spectroscopy were used to evaluate the assessment of the electrochemical behavior in the natural seawater of China's Yellow Sea. The hybrid specimens exhibited excellent corrosion resistance compared to both the nitrided and coated specimens.  相似文献   

12.
A micro-plasma oxidation (MPO) technique has been developed in recent years, by which ceramic coatings are reported to possess improved properties and promising application prospects in many fields. The aim of this work was to study the effect of sodium sulfate, as an additive in the zirconate system, on the structure and corrosion resistance of ceramics coatings containing zirconium oxide grown on Ti–6Al–4V by MPO process. The phase composition, morphology, and element distribution in the coating were investigated by X-ray diffractometry, scanning electron microscopy, and energy distribution spectroscopy. Meanwhile, the corrosion resistance of the coated samples was examined by polarizing curves and potentiodynamic anodic curves in 3.5% NaCl solution. The results show that ceramic coatings were composed of m -ZrO2, t -ZrO2, and KZr2(PO4)3. The Ti content in the coating near the substrate decreased sharply, and then remained at 5 wt% or so through the coating, while the Zr content near the substrate increased greatly, and then remained at about 55 wt% through the coating. The addition of sodium sulfate did not change the composition of the coatings, but increased the relative proportion of zirconium oxide to KZr2(PO4)3 in the coating. Sodium sulfate decreased the thickness of the coating, while improving the density of the coatings. Moreover, the addition of the sodium sulfate improved the corrosion resistance of the coated samples in a 3.5% NaCl solution, whether considering localized pitting corrosion resistance or uniform corrosion resistance.  相似文献   

13.
T. Zhang 《Electrochimica acta》2005,50(24):4721-4727
Electrically conducting polypyrrole (Ppy) coatings doped with sodium dodecylsulfate (SDS) have been deposited on 1Cr18Ni9Ti stainless steel by anodic polymerization from aqueous solutions of pyrrole and sodium dodecylsulfate. The corrosion behavior of Ppy coated steel was investigated in 0.3 M HCl aqueous solution at room temperature by a combination of electrochemical measurement techniques and scanning electron microscopy. The steel is in active state at the open circuit potential and suffers from pitting corrosion when the polarization potential is higher than 210 mV versus SCE. The Ppy coating can increase the corrosion potential of the steel by more than 600 mV versus SCE, and the pitting corrosion potential by more than 500 mV versus SCE. Fifty-day exposure experiments indicated that the Ppy coating shows high stability, and can inhibit effectively the corrosion of the steel.  相似文献   

14.
This study investigated the electrochemical behavior of chromium nano-carbide cermet coating applied on Ti–6Al–4V and Co–Cr–Mo alloys for potential application as wear and corrosion resistant bearing surfaces. The cermet coating consisted of a highly heterogeneous combination of carbides embedded in a metal matrix. The main factors studied were the effect of substrate (Ti–6Al–4V vs. Co–Cr–Mo), solution conditions (physiological vs. 1 M H2O2 of pH 2), time of immersion (1 vs. 24 h) and post coating treatments (passivation and gamma sterilization). The coatings were produced with high velocity oxygen fuel (HVOF) thermal spray technique at atmospheric conditions to a thickness of 250 μm then ground and polished to a finished thickness of 100 μm and gamma sterilized. Native Ti–6Al–4V and Co–Cr–Mo alloys were used as controls. The corrosion behavior was evaluated using potentiodynamic polarization, mechanical abrasion and electrochemical impedance spectroscopy under physiologically representative test solution conditions (phosphate buffered saline, pH 7.4, 37 °C) as well as harsh corrosion environments (pH  2, 1 M H2O2, T = 65 °C). Severe environmental conditions were used to assess how susceptible coatings are to conditions that derive from possible crevice-like environments, and the presence of inflammatory species like H2O2. SEM analysis was performed on the coating surface and cross-section. The results show that the corrosion current values of the coatings (0.4–4 μA/cm2) were in a range similar to Co–Cr–Mo alloy. The heterogeneous microstructure of the coating influenced the corrosion performance. It was observed that the coating impedances for all groups decreased significantly in aggressive environments compared with neutral and also dropped over exposure time. The low frequency impedances of coatings were lower than controls. Among the coated samples, passivated nanocarbide coating on Co–Cr–Mo alloy displayed the least corrosion resistance. However, all the coated materials demonstrated higher corrosion resistance to mechanical abrasion compared to the native alloys.  相似文献   

15.
采用直流磁控溅射法在AZ31镁合金上制备了TiCN涂层.采用X射线荧光光谱仪、扫描电镜和X射线衍射仪表征了涂层的化学成分、表面形貌和物相,并采用电化学阻抗谱、浸泡试验、显微硬度测试和磨损试验考察了基体偏压(-40、-60和-80 V)对涂层性能的影响.结果表明,涂层由TiCN和TiN组成.随着负偏压增大,涂层中Ti、C...  相似文献   

16.
Surface films of TiN and TiN/Ti were deposited on Ti6Al4V alloy by arc ion plating (AIP). Open-circuit potential, potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were employed to investigate the corrosion performance of TiN and TiN/Ti films in Hank’s simulated body fluid at 37 °C and pH 7.4. Scanning electron microscopy (SEM) was used to study the surface morphology of the corroded samples after the potentiodynamic polarization tests. The results show that the TiN and the TiN/Ti films can provide effective protection for the Ti6Al4V substrate in Hank’s fluid, and the TiN/Ti composite film showed a corrosion resistance superior to that of the TiN film. The outer TiN layer of the composite film mainly acted as an efficient barrier to corrosion during short-term experiments. In contrast to the bare Ti6Al4V, no pitting was observed on the surface of the TiN and TiN/Ti films deposited on the bare alloy after potentiodynamic polarization.  相似文献   

17.
《Ceramics International》2019,45(15):18371-18381
In the present study eggshells-derived hydroxyapatite (EHA) coatings were successfully produced on Ti6Al4V substrates using micro-arc oxidation process (MAO) at various concentrations of EHA (i.e. 1, 1.5 and 2 g/L) in an electrolyte consisting of tri-sodium orthophosphate. The attributes of the coatings were determine by X-ray diffraction, attenuated total reflectance-fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. The adhesion strength was evaluated using micro scratch tester, while the corrosion behavior of the MAO-coated substrates in phosphate buffer solution was determined by an electrochemical method. The results showed that as the EHA concentration increased, this was accompanied by a reduction in the porosity due to the formation of a dense and thick coating layer. This has also resulted in an increased in the surface roughness and degree of crsytallinity of the HA phase. The MAO-coated substrate prepared with 1.5 g/L EHA concentration exhibited a well-formed coating layer with improved adhesive strength and excellent corrosion resistance. The mechanism of EHA-coating formation as well as the enhanced corrosion resistance of the coated substrates were discussed. This research shows the viability of using calcium-rich waste eggshells to produce phase pure HA suitable for coating on Ti6Al4V substrate using MAO method.  相似文献   

18.
热浸镀锌层表面钛盐转化膜研究   总被引:2,自引:0,他引:2  
利用钛盐成膜工艺在热镀锌层表面获得了色泽光亮、耐蚀性能优良的银白色转化膜层。采用扫描电镜、能谱仪、电化学极化和盐水浸泡方法研究了钛盐转化膜层的表面形貌、元素组成和耐蚀性能。分析了钛盐溶液成分及工艺参数对热镀锌层表面转化膜的耐蚀性能影响。确定的最佳工艺条件为:Ti(SO4)21g/L,H2O260mL/L,pH0.5~1.0,处理温度25~30°C,处理时间10min。热镀锌层经此工艺处理后,耐蚀性能明显提高。  相似文献   

19.
Titanium and its alloys are widely used as materials for implants, owing to their corrosion resistance, mechanical properties and excellent biocompatibility. However, clinical experience has shown that they are susceptible to localised corrosion in the human body causing the release of metal ions into the tissues surrounding the implants. Several incidences of clinical failures of such devices have demanded the application of biocompatible and corrosion resistant coatings and surface modification of the alloys. Coating metallic implants with bioactive materials is necessary to establish good interfacial bonds between the metal substrate and the bone. Hence, this work aimed at developing a bioglass-apatite (BG-HAP) graded coating on Ti6Al4V titanium alloy through electrophoretic deposition (EPD) technique. The coatings were characterized for their properties such as structural, electrochemical and mechanical stability. The electrochemical corrosion parameters such as corrosion potential (Ecorr) (open circuit potential) and corrosion current density (Icorr) evaluated in simulated body fluid (SBF) have shown significant shifts towards noble direction for the graded bioglass-apatite coated specimens in comparison with uncoated Ti6Al4V alloy. Electrochemical impedance spectroscopic investigations revealed higher polarisation resistance and lower capacitance values for the coated specimens, evidencing the stable nature of the formed coatings. The results obtained in the present work demonstrate the suitability of the electrophoretic technique for the preparation of graded coating on Ti6Al4V substrates.  相似文献   

20.
Chromium-phosphorus (Cr-P) coatings are electrodeposited from trivalent Cr (Cr(III)) baths containing hypophosphite. The electrochemical corrosion behavior of Cr-P coatings, traditional Cr coatings deposited in hexavalent Cr (Cr(VI)) baths, and chromium-carbon (Cr-C) coatings deposited in Cr(III) baths containing formate are studied by measuring potentiodynamic polarization curves in a 10 wt% HCl solution. The composition and morphology of the coating surface layers are investigated by X-ray photoelectron spectrometry (XPS) and scanning electron microscopy (SEM), respectively. The results of electrochemical tests show that Cr-P coatings exhibit better corrosion resistance than traditional Cr and Cr-C coatings, which is characterized by a lower critical current density, lower passive current density, and lager passive potential range. XPS and SEM analyses confirm that the excellent corrosion resistance of Cr-P coatings is attributed to the formation of a phosphide passive film, which has high stability and self-repairing ability, and can act as a “buffer” to reject the penetration of chloride ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号