首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hard carbon spherules (HCS) were used as support of Pt nanoparticles as electrocatalyst for direct methanol fuel cells (DMFCs). Scanning electron microscopy (SEM) images show that the size of the Pt particles on HCS by reduction of K2PtCl6 with ethylene glycol is 4-5 nm. High-resolution transmission electron microscopy (HRTEM) study reveals that the Pt particles on the HCS surface have faceted crystalline structures. The size and aggregation of the Pt particles depend on the surface properties of the carbon support and the medium of the reduction reaction. Cyclic voltammetry and galvanostatic polarization experiments show that the Pt/HCS catalyst exhibits a higher catalytic activity in the electrooxidation of methanol than either the Pt/MCMB or the commercial Pt/Vulcan XC-72 catalyst does.  相似文献   

2.
Sulfated zirconia supported on multi-walled carbon nanotubes as new supports of Pt catalyst (Pt–S-ZrO2/MWCNT) was synthesized with aims to enhance electron and proton conductivity and also catalytic activity of Pt electrocatalyst in terms of larger concentrations of ionizable OH groups on surfaces. Fourier transform infrared spectroscopy analysis shows that the sample surfaces were modified with sulfate. Transmission electron microscopy results show that the Pt and sulfated ZrO2 particles dispersed relatively uniformly on the surface of the multi-walled carbon nanotube. X-ray diffraction shows that S-ZrO2 and Pt coexist in the Pt–S-ZrO2/MWCNT composites and S-ZrO2 has no effect on the crystalline lattice of Pt. Pt–S-ZrO2/MWCNT catalyst was evaluated in terms of the electrochemical activity for methanol electro-oxidation using cyclic voltammetry, steady-state polarization experiments and electrochemical impedance spectroscopy technique at room temperature. Pt–S-ZrO2/MWCNT catalyst show higher catalytic activity for methanol electro-oxidation compared with Pt catalyst on non-sulfated ZrO2/MWCNT support and commercial Pt/C (E-TEK).  相似文献   

3.
A Pt/C catalyst modified by the Keggin-structure molybdovanadophosphoric acid (PMV) is prepared by cyclic voltammetry and the modified Pt/C catalyst is studied for methanol electrooxidation. The results show that the PMV modified Pt/C catalyst has increased the electron transfer coefficient of the rate-determining step and diminished the adsorption of CO on Pt/C catalysts. Significant improvements in the catalytic activity and stability for methanol electrooxidation are observed, and it indicates that the PMV combined with Pt/C catalyst can be considered as a good electrocatalyst material for potential application in direct methanol fuel cells.  相似文献   

4.
The exploration of advanced catalyst supports is a promising route to obtain electrocatalysts with high activity and durability. Herein, the nitrogen-doped graphitized carbon/TiO2 composite was fabricated and explored as support for the Pt catalyst. The composite support was constructed by carbonization of polypyrrole/TiO2 using cobalt nitrate and nickel nitrate as graphitizing catalysts. The resulting catalyst shows enhanced electrocatalytic performance for methanol electrooxidation compared with the commercial Pt/C catalyst. The enhancement can be ascribed to combinatory effect of N-doped graphitized carbon and TiO2, in which the tolerance to CO-poisoning and the intrinsic kinetics of methanol oxidation reaction were simultaneously improved by the bifunctional effect and the modification of the electronic structure. As a result, the as-developed nitrogen-doped graphitized carbon/TiO2 composite present attractive advantages for the application in fuel cell electrocatalyst.  相似文献   

5.
Nitrogen-doped graphene (N-G) was prepared by thermal annealing of graphene oxide in ammonia at different temperatures. The resultant N-G was used as a conductive support for Pt nanoparticles (Pt/N-G) and the electrocatalytic activity of the Pt/N-G catalysts towards methanol oxidation was examined. To investigate the microstructure and morphology of the synthesized catalysts, X-ray diffraction, scanning and transmission electron microscopy and X-ray photoelectron spectroscopy were used. The catalytic activity of the catalysts towards the oxidation of methanol was evaluated by cyclic voltammetry. Compared to a control catalyst of Pt loaded on undoped graphene, the Pt/N-G materials show higher electrochemical activity towards methanol oxidation. The excellent electrochemical performance of Pt/N-G is mainly attributed to the nitrogen doping and the uniform distribution of Pt particles on the doped graphene support. These results indicate that N-doped graphene has great potential as a high-performance catalyst support for fuel cell electrocatalysis.  相似文献   

6.
Core/shell nanostructured carbon materials with carbon nanofiber (CNF) as the core and a nitrogen (N)-doped graphitic layer as the shell were synthesized by pyrolysis of CNF/polyaniline (CNF/PANI) composites prepared by in situ polymerization of aniline on CNFs. High-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared and Raman analyses indicated that the PANI shell was carbonized at 900°C. Platinum (Pt) nanoparticles were reduced by formic acid with catalyst supports. Compared to the untreated CNF/PANI composites, the carbonized composites were proven to be better supporting materials for the Pt nanocatalysts and showed superior performance as catalyst supports for methanol electrochemical oxidation. The current density of methanol oxidation on the catalyst with the core/shell nanostructured carbon materials is approximately seven times of that on the catalyst with CNF/PANI support. TEM tomography revealed that some Pt nanoparticles were embedded in the PANI shells of the CNF/PANI composites, which might decrease the electrocatalyst activity. TEM-energy dispersive spectroscopy mapping confirmed that the Pt nanoparticles in the inner tube of N-doped hollow CNFs could be accessed by the Nafion ionomer electrolyte, contributing to the catalytic oxidation of methanol.  相似文献   

7.
Core/shell nanostructured carbon materials with carbon nanofiber (CNF) as the core and a nitrogen (N)-doped graphitic layer as the shell were synthesized by pyrolysis of CNF/polyaniline (CNF/PANI) composites prepared by in situ polymerization of aniline on CNFs. High-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared and Raman analyses indicated that the PANI shell was carbonized at 900°C. Platinum (Pt) nanoparticles were reduced by formic acid with catalyst supports. Compared to the untreated CNF/PANI composites, the carbonized composites were proven to be better supporting materials for the Pt nanocatalysts and showed superior performance as catalyst supports for methanol electrochemical oxidation. The current density of methanol oxidation on the catalyst with the core/shell nanostructured carbon materials is approximately seven times of that on the catalyst with CNF/PANI support. TEM tomography revealed that some Pt nanoparticles were embedded in the PANI shells of the CNF/PANI composites, which might decrease the electrocatalyst activity. TEM-energy dispersive spectroscopy mapping confirmed that the Pt nanoparticles in the inner tube of N-doped hollow CNFs could be accessed by the Nafion ionomer electrolyte, contributing to the catalytic oxidation of methanol.  相似文献   

8.
Two types of Pt nanowires (NWs)/C catalysts with different aspect ratios and one type of Pt nanoparticles/C catalyst are successfully synthesized, and DME electrochemical performance on different extent consecutive surfaces is investigated. The morphology and crystallization are confirmed with electron microscopes and XRD. The electrochemical tests show that the nanowire catalysts, especially the one with higher aspect ratio, possess higher electrochemical surface areas, higher absorption capacity of DME, higher CO tolerance, higher electron transfer coefficient, and higher activity towards DME electrooxidation than those of the nanoparticle catalyst. The results prove that the consecutive surface favors for direct dimethyl ether fuel cell (DDFC) anodic catalyst, which are contributive to the study of the mechanism of DME electrooxidation on Pt surface and designing an effective catalyst for anodic DDFC.  相似文献   

9.
陆勤  李俊鹏 《广东化工》2006,33(12):8-10
应用恒电位沉积法制得Pt、Ru和PtRu直接甲醇燃料电池阳极催化剂,并对三种催化剂的甲醇氧化活性和稳定性进行了考察。动电位和恒电位实验结果均表明,Ru的加入使PtRu的甲醇起始氧化电位相对于Pt催化剂负移,催化活性和稳定性得到明显的改善。  相似文献   

10.
N. Zhang  S. Zhang  Y. Gao  G. Yin 《Fuel Cells》2013,13(5):895-902
In this work, Pt nanoparticles are deposited on NbO2‐modified carbon composites and evaluated as promising direct methanol fuel cell (DMFC) electrocatalysts. Transmission electron microscopy (TEM) and X‐ray diffraction (XRD) indicate that Pt nanoparticles (about 2.5 nm) are uniformly dispersed on NbO2‐modified carbon composites. Electrochemical measurements show that the mass activity toward methanol electrooxidation on Pt/NbO2‐C is as high as 3.0 times that of conventional Pt/C. Meanwhile, the onset potential of CO oxidation is negatively shifted by about 46 mV as compared with that of Pt/C, which means that the synergistic effect between NbO2 and Pt facilitates the feasible removal of poisoning intermediate CO during methanol electrooxidation. X‐ray photoelectron spectroscopy (XPS) characterizations reveal the electron transfer from Nb to Pt, which suppress the poisoning CO adsorption on Pt nanoparticles and facilitate methanol electrooxidation. NbO2 nanoparticles facilitate methanol electrooxidation on Pt/C catalyst by synergistic effect and electronic effect, which represents a step in the right direction for the development of excellent fuel cell anode electrocatalysts.  相似文献   

11.
比较研究了炭气凝胶(CA)的制备工艺条件对其表面微观结构及以其为载体的催化剂Pt/CA甲醇氧化催化活性的影响.结果表明,常压干燥制得的CA表面以微孔为主,而超临界CO2干燥制得的CA表面主要以中孔为主,而且比表面积、表面孔容和平均孔径更大;超临界CO2干燥比常压干燥更适合制备高活性甲醇氧化Pt/CA催化剂的载体材料;CA制备过程中催化剂Na2CO3的用量(常用R/C表示,其中R代表制备CA的原料间苯二酚,C代表制备CA的催化剂Na2CO3)为200至1000的范围内,R/C的增大会引起超临界CO2干燥制得CA的表面平均孔径随之增加,R/C为300时制得的CA具有最大的BET比表面积和表面孔容,以其为载体制得的催化剂具有最好的甲醇氧化催化性能.  相似文献   

12.
Electrolytically deposited Cu on polyaniline film covered Pt substrate (Cu/PANI/Pt) is used as anode for the electrooxidation of methanol in alkaline medium. The electrochemical behavior and electrocatalytic activity of the electrode were characterized using cyclic voltammetry, impedance spectroscopy, chronomethods, rotating disc voltammetry and polarization studies. The morphology and composition of the modified film were obtained using SEM and EDAX techniques. The electrooxidation of methanol in NaOH is found to be more efficient on Cu/PANI/Pt than on bare Cu (Cu), electrodeposited Cu on Cu (Cu/Cu) and electrodeposited Cu on Pt (Cu/Pt) substrates. Partial chemical displacement of dispersed Cu on PANI with Pt or Pd further improved its performance towards methanol oxidation.  相似文献   

13.
PtRuSnOx supported on multi-wall carbon nanotubes (MWCNTs) was prepared by ultrasonic-assisted chemical reduction method. The as-prepared catalyst was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns indicate that Pt exists as the face-centered cubic structure, Ru is alloyed with platinum, while non-noble metal oxide SnOx exists as an amorphous state. From TEM observation, PtRuSnOx is well dispersed on the surface of MWCNTs with the particle size of several nanometers. The electrochemical properties of the as-prepared catalyst for methanol electrooxidation were studied by cyclic voltammetry (CV) and chronoamperometry (CA). The onset potential of methanol oxidation on PtRuSnOx and PtRu catalysts is much more negative than that on Pt catalyst, shifting negatively by about 0.20 V, while the peak current density of methanol oxidation on PtRuSnOx is higher than that on PtRu. Electrochemical impedance spectroscopy (EIS) studies also show that the reaction kinetics of methanol oxidation is improved with the presence of SnOx. The addition of non-noble metal oxide SnOx to PtRu promotes the catalytic activity for methanol electrooxidation and the possible reaction mechanism is proposed.  相似文献   

14.
SnO2-carbon nanotubes (CNTs) composites were prepared by sol-gel method, and characterized by scanning electron microscopy and X-ray diffraction. Due to high stability in diluted acidic solution, SnO2-CNTs composites were selected as the catalyst support and second catalyst for ethanol electrooxidation. The electrocatalytic properties of the SnO2-CNTs supported platinum (Pt) catalyst (Pt/SnO2-CNTs) for ethanol oxidation have been investigated by typical electrochemical methods. Under the same mass loading of Pt, the Pt/SnO2-CNTs catalyst shows higher electrocatalytic activity and better long-term cycle stability than Pt/SnO2 catalyst. Additionally, the effect of the mass ratio of CNTs to SnO2 on the electrocatalytic activity of the electrode for ethanol oxidation was investigated, and the optimum mass ratio of CNTs to SnO2 in the Pt/SnO2-CNTs catalyst is 1/6.3.  相似文献   

15.
Mesoporous deposits of platinum catalysts were electrodeposited over monolith carbon with hierarchical porous structure. The liquid crystal used as a template allowed the electrodeposition of the catalyst on the outer region of the carbon with low penetration in the porous structure. The platinum hexagonal mesostructured deposits exhibits an excellent stability enhanced by the roughness of the carbon support. The mass activity for the electrooxidation of methanol of the mesoporous Pt catalyst supported on the hierarchical carbon is similar to that observed on gold and to that reported for commercial Pt nanoparticulated catalysts, even when this catalyst has a smaller Pt load than the commercial one. Also, the poisoning rate of the mesoporous catalyst is lower than that observed for the commercial catalyst. The integrated system of structured materials could be suitable for the fabrication of modified electrodes in small scale applications.  相似文献   

16.
Polyaniline (PANI) with nanowire (PANI‐(NW)) network structure (mean diameter 10–20 nm) was successfully deposited on a stainless steel (SS) electrode by a galvanostatic process. Platinum particles were deposited into the PANI nanowire network structure to result the PANI(NW)‐Pt composite electrode. The PANI(NW)‐Pt electrode was used as electrocatalysts for the electrochemical oxidation of methanol. The PANI nanowires and PANI(NW)‐Pt nanocomposite were characterized by scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), and UV–vis absorption spectroscopy. Nanowire morphology with an average diameter of 10–20 nm could be seen from scanning electron micrograph. Small amount (70 mμm) of spherical Pt particles could be deposited into the PANI(NW). Catalytic activity for the oxidation of methanol was studied by using cyclic voltammetry (CV). For comparative purposes, bulk Pt (deposited Pt on SS) and PANI nanowires based electrodes were tested. The PANI(NW)‐Pt nanocomposite electrode exhibited excellent catalytic activity for the electrooxidation of methanol in comparison to bulk Pt electrodes, which reveals that the PANI(NW)‐Pt nanocomposite electrodeis more promising for application in electrocatalyst as a support material. POLYM. COMPOS., 28:650–656, 2007. © 2007 Society of Plastics Engineers  相似文献   

17.
T. Zhou  H. Wang  S. Ji  H. Feng  R. Wang 《Fuel Cells》2014,14(2):296-302
Carbon materials derived from biomass are economical and simple. Here, a okara‐derived carbon (ODC) was prepared by carbonized cheap and abundant okara at 800 °C in N2 atmosphere. A high degree of graphitization, mesoporous structure and large specific surface area of ODC were proved by Raman spectroscopy, nitrogen adsorption–desorption isotherms, X‐ray diffraction, Fourier transform infrared spectra and scanning electron microscope. The ODC can be used as support of platinum nanoparticles, and the catalytic performance for methanol electro‐oxidation of its was measured by cyclic voltammetry and CO stripping voltammetry. The results showed that Pt/ODC catalyst had higher electrocatalytic activity and the resistance to poisoning ability toward methanol electrooxidation than the Pt/C catalyst prepared under the same conditions.  相似文献   

18.
Nanostructures consisting of TiO2 particles as a core and carbon as a shell (TiO2@C) were prepared by heat treatment of TiO2 nanoparticles at 700 or 900 °C in a methane atmosphere. X-ray diffraction and transmission electron microscopy showed that a carbon shell layer was formed whose thickness increased with increasing reaction temperature. These structures were used as supports for platinum nanoparticles and the hybrid particles exhibit improved catalytic activity and stability toward methanol electrooxidation compared to Pt on a carbon black (Vulcan XC-72R). It is likely that enhanced catalytic properties of the Pt on TiO2@C could be due to the stability of the core-shell support in comparison with carbon black support.  相似文献   

19.
Pt/C electrocatalysts, aimed at maximizing the electrochemical surface area (ECSA) and consequently the specific mass activity of fuel cell reactions, are obtained by firstly depositing Pt nanoparticles on colloidal silica (Pt‐silica), followed by the adsorption of the latter onto a carbon support. This method of catalyst preparation increases Pt metal utilization and generates accessible void space in the interpenetrating particle network of carbon and silica for the facile transport of reactants and products. Both electrochemical hydrogen adsorption/desorption and CO oxidation measurements show an increase in the ECSA using this approach. Methanol electrooxidation is used as a test reaction to evaluate the catalytic activity. It is found that the silica modified catalyst is three times as active as a catalyst prepared without silica, under otherwise identical conditions.  相似文献   

20.
In order to develop a cheaper and durable catalyst for methanol electrooxidation reaction, ceria (CeO2) as a co-catalytic material with Pt on carbon was investigated with an aim of replacing Ru in PtRu/C which is considered as prominent anode catalyst till date. A series of Pt-CeO2/C catalysts with various compositions of ceria, viz. 40 wt% Pt-3–12 wt% CeO2/C and PtRu/C were synthesized by wet impregnation method. Electrocatalytic activities of these catalysts for methanol oxidation were examined by cyclic voltammetry and chronoamperometry techniques and it is found that 40 wt% Pt-9 wt% CeO2/C catalyst exhibited a better activity and stability than did the unmodified Pt/C catalyst. Hence, we explore the possibility of employing Pt-CeO2 as an electrocatalyst for methanol oxidation. The physicochemical characterizations of the catalysts were carried out by using Brunauer Emmett Teller (BET) surface area and pore size distribution (PSD) measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. A tentative mechanism is proposed for a possible role of ceria as a co-catalyst in Pt/C system for methanol electrooxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号