首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 726 毫秒
1.
天然气内重整和外重整下SOFC多场耦合三维模拟分析   总被引:1,自引:0,他引:1       下载免费PDF全文
谢静  徐明益  班帅  孙晖  周红军 《化工学报》2019,70(1):214-226
内重整(IR)和外重整(ER)是固体氧化物燃料电池(SOFC)以天然气(NG)为燃料时的两种工作方式,不同重整方式下的电池性能、效率也不尽相同。借助有限元分析软件COMSOL Multiphysics? 5.2,以天然气为燃料,建立了电池组成为Ni-YSZ//YSZ//LSCF-GDC的ER-SOFC和IR-SOFC两种三维单电池模型。模拟结果表明:相同条件下,IR-SOFC具有比ER-SOFC更高的功率密度、燃料利用率和能量利用率;阳极重整反应主要发生在靠近燃料入口的区域内;H2和CO含量在IR-SOFC中先升高后降低,在ER-SOFC中则一直降低;IR-SOFC的温度变化更剧烈,燃料入口处温度梯度最大;越靠近集流体的区域,电解质表面的离子电流密度越大;ER-SOFC阳极不会发生热力学上的积炭现象,对于IR-SOFC,CH4热分解反应是整个阳极发生积炭的主要原因,其在燃料入口处的积炭活性高达270。  相似文献   

2.
面向高性能固体氧化物燃料电池(SOFC)低成本制备及长寿命运行需求,提出了一种致密氧化铈基隔离层的制备方法。将阳极支撑半电池的Y2O3稳定ZrO2(YSZ)电解质浸没于硝酸钆和硝酸铈水溶液中,并在180℃水热条件下处理36 h,获得了原位生长的致密Gd2O3掺杂CeO2(GDC)薄膜;进一步将其与La0.6Sr0.4Co0.2Fe0.8O3–δ阴极在1 075℃共烧结,得到阳极支撑SOFC单电池。结果表明,水热原位生长制备的GDC隔离层连续且致密,组成约为Gd0.044Ce0.956O2–δ,厚度约为0.23μm;阳极支撑单电池在750℃的欧姆阻抗约为0.101Ω·cm2,相较于传统丝网印刷GDC隔离层单电池降低了约38%,在室温加湿氢气燃料下的最大功率密度达到...  相似文献   

3.
吴嵘  吴素芳 《化工学报》2014,65(6):1961-1970
为拓宽反应吸附强化水蒸气重整制氢(ReSER)原料的应用范围,采用化工流程模拟软件Aspen Plus,针对包括C2H4、C2H6、C3H6、C3H8 的C2/C3轻烃 ReSER制氢反应可行性和优化条件进行热力学分析计算。在选择的反应压力0.1~5 MPa,温度200~800℃,水碳摩尔比(S/C)1~8和吸附剂中氧化钙和原料碳摩尔比(Ca/C)0~5条件下进行热力学分析计算。计算结果表明:在优选的水碳比(S/C)4,钙碳比(Ca/C)2.5,温度200~650℃,压力0.1~1.8 MPa的条件下, C2H4、C2H6、C3H6、C3H8均可分别通过ReSER反应获得H2含量在95%以上的产物,产物中H2浓度均随着水碳比和钙碳比的增大而提高。在假设的水碳比4,钙碳比2.5条件下,当CO2脱除率达到0.9以上,C2H4、C2H6、C3H6、C3H8的反应温度分别高于250、400、250、350℃时,产物中H2摩尔分数均可达到95%以上,产物中的H2浓度随着反应温度的升高和CO2脱除率的增加而提高。当CO2脱除率低于0.9,产物H2摩尔分数要达到95%时,C2H4、C2H6、C3H6、C3H8的反应温度均需升高50℃。在相同长度C链的烃类中,烯烃比烷烃更容易发生ReSER反应。而原料的碳链越长,则越容易发生ReSER制氢反应。  相似文献   

4.
应用溶剂热法合成了不同氧化石墨烯(GO)负载量的MOF-505@GO复合材料,分别采用全自动表面积吸附仪、P-XRD、SEM和Raman对材料进行了性能表征,测定了CH4、C2H6和C3H8在MOF-505@GO上的吸附等温线,并进行Langmuir-Freundlich方程拟合,依据IAST理论模型计算了C2H6/CH4和C3H8/CH4二元混合气在MOF-505@5GO上的吸附选择性。研究结果表明,随着GO负载量增大,MOF-505@GO复合材料的孔容及BET比表面积先增大后减小,当GO负载量为5%(质量)时,复合材料MOF-505@5GO的孔容及BET比表面积达到最大,当GO负载量进一步增大至8%(质量)和10%(质量)时,复合材料的孔容及BET比表面积逐渐降低。在0.1 MPa和298 K条件下,MOF-505@5GO对CH4、C2H6和C3H8的吸附容量分别为0.88、4.81和5.17 mmol·g-1,相比MOF-505分别提高了14.9%、30.7%和13.1%。MOF-505@5GO对C2H6/CH4和C3H8/CH4的吸附选择性分别为40.1和3056.1,其对C2H6/CH4和C3H8/CH4具有极高的吸附选择性。  相似文献   

5.
利用微型固定床反应装置对工业Fe-Mo预加氢脱硫催化剂进行加氢脱硫(HDS)评价,研究焦炉煤气中不同常量含碳原料组分(CH4、C2H4、C2H6、CO、CO2)对催化剂加氢活性、选择性以及积炭的影响,并采用红外碳硫分析仪、N2吸附-脱附、Raman以及TPRS-MS对催化剂进行表征。结果表明:在N2气氛下,COS、CS2和C4H4S加氢转化由易到难顺序为:COS>CS2>C4H4S,但COS加氢转化受含碳气氛影响最明显,致使焦炉煤气加氢脱硫中COS难以完全脱除;不同气氛对硫化物加氢选择性都会产生影响,其中C2H4气氛对选择性影响最明显,而对H2S收率影响最明显的是CO2和CO;不同含碳...  相似文献   

6.
于双鹏  杨启容  陶礼  刘亭  杜威  姚尔人 《化工进展》2021,40(6):3119-3131
运用分子动力学的方法,对轮胎橡胶的热解过程进行了模拟,并结合模拟结果和密度泛函数对其气相产物的反应路径进行推测计算。模拟结果表明,热解过程主要分为两个阶段,低温热解阶段发生的主要反应是橡胶长链断裂形成单体,主要产物为异戊二烯、苯乙烯和1,3-丁二烯;高温热解阶段发生的主要反应是单体进一步生成小分子气体,产物中CH4、H2、C2H4占大部分,还有少量C2H6、C3H6。其中CH3·攻击异戊二烯和苯乙烯单体夺取特定位置的H·是生成CH4的最优路径,H·攻击苯乙烯单体夺取特定位置的H·是生成H2的最优路径,CH2CH·攻击1,3-丁二烯单体夺取特定位置的H·是生成CH2CH2的最优路径。本文还将热解产物分别跟天然橡胶单独热解和天然橡胶与丁苯橡胶共热解的热解产物做对比,为废旧轮胎橡胶热解得到特定的气相产物和催化热解提供理论依据。  相似文献   

7.
陈晨  杨倩  陈云  张睿  刘冬 《化工学报》1951,73(9):4133-4146
燃煤有机污染物对人类健康和生态环境存在严重危害,而O2对火焰中有机产物的形成具有明显的调控作用。鉴于煤挥发分燃烧是燃煤过程中至关重要的一环,本文以煤热解气为燃料,通过数值模拟研究了氧化剂侧O2浓度对对冲扩散火焰中碳氢产物生成特性和机制的影响。结果表明,O2浓度升高促进了O和OH的生成,进而提高H浓度,突显了含H和OH参与的反应的重要性。此外,乙炔(C2H2)、丙炔(PC3H4)、炔丙基(C3H3)、乙烯基乙炔(C4H4)、苯(C6H6)和萘(C10H8)的浓度均增大。增加O2浓度促进了C2H2向PC3H4的转化,并使得C3H3更倾向于转化为丁二烯(C4H6),而富烯更倾向于通过苯基(C6H5)生成C6H6,因此C6H5作为C6H6前体的地位被加强。  相似文献   

8.
陈晨  杨倩  陈云  张睿  刘冬 《化工学报》2022,73(9):4133-4146
燃煤有机污染物对人类健康和生态环境存在严重危害,而O2对火焰中有机产物的形成具有明显的调控作用。鉴于煤挥发分燃烧是燃煤过程中至关重要的一环,本文以煤热解气为燃料,通过数值模拟研究了氧化剂侧O2浓度对对冲扩散火焰中碳氢产物生成特性和机制的影响。结果表明,O2浓度升高促进了O和OH的生成,进而提高H浓度,突显了含H和OH参与的反应的重要性。此外,乙炔(C2H2)、丙炔(PC3H4)、炔丙基(C3H3)、乙烯基乙炔(C4H4)、苯(C6H6)和萘(C10H8)的浓度均增大。增加O2浓度促进了C2H2向PC3H4的转化,并使得C3H3更倾向于转化为丁二烯(C4H6),而富烯更倾向于通过苯基(C6H5)生成C6H6,因此C6H5作为C6H6前体的地位被加强。  相似文献   

9.
为了提高固体氧化物燃料电池在中温条件下的电性能,探索了一种双金属阳极的阴极支撑单电池。单电池以La0.6Sr0.4CoO3(LSC)-Ce0.9Gd0.1O1.95(GDC)为阴极支撑体,旋涂了甘氨酸-硝酸盐法制备的La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)电解质及Sm0.2Ce0.8O1.9(SDC)缓冲层,涂覆了由硬模板法和浸渍法结合制备的Ni-Fe/GDC双金属阳极。对制备材料进行了XRD和微观形貌分析,单电池电化学测试在800 ℃和750 ℃下,以氢气为燃料的最大功率密度达0.73 W/cm2和0.64 W/cm2,以甲烷为燃料时达0.41 W/cm2和0.40 W/cm2。测试后的SEM表明,阳极具有多孔的微观结构,金属颗粒均匀包覆蠕虫状GDC,保证了单电池具有较高的发电性能。  相似文献   

10.
唐瑜佞  王勋  彭俊洁  吴颖  李忠 《化工学报》2021,72(11):5664-5674
采用实验研究与分子模拟相结合的方法研究了低碳烷烃烯烃在超微孔柔性Cu(Qc)2上的吸附热力学、动力学和吸附分离机理。用常温合成方法制备了超微孔金属-有机骨架材料Cu(Qc)2,测定了低碳烷烃烯烃(CH4/C2H4/C2H6/C3H6/C3H8)在Cu(Qc)2上的吸附相平衡和吸附动力学。使用Materials Studio中的Fortcite模块模拟低碳烷烃烯烃在超微孔柔性Cu(Qc)2上的吸附机理以及材料的结构形变。结果表明Cu(Qc)2具有优良的C2H6 /C2H4吸附选择性和吸附动力学,而对C3H8 /C3H6的吸附选择性很低。273 K和0.1 MPa下,C2H6/C2H4在Cu(Qc)2上的IAST选择性达4.6。298 K和0.05 MPa下C2H6/C2H4在Cu(Qc)2上的扩散时间常数分别达1.42×10-3和1.48×10-3s-1,扩散活化能分别为16.62 和16.43 kJ/mol。应用装填Cu(Qc)2的固定床可在常温条件下实现C2H6 /C2H4二元混合气的完全分离。模拟结果显示Cu(Qc)2为二维堆叠结构,材料会由于吸附不同分子而发生不同程度的结构形变。甲烷易从变大的层间扩散脱附,导致其在材料上的吸附量很低;C2H6/C2H4两者都能稳定吸附在层中的孔道中,其分离推动力主要来源于两种气体在材料上明显的吸附热差异;C3H8/C3H6会分别吸附在两种不同的环境,吸附热差异小导致Cu(Qc)2对C3H8 /C3H6的吸附选择性低。  相似文献   

11.
Electrostatic spray deposition (ESD) was applied to fabricate a thin-layer of yttria-stabilized zirconia (YSZ) electrolyte on a solid oxide fuel cell (SOFC) anode substrate consisting of nickel-YSZ cermet. A colloidal solution of 8 mol% YSZ in ethanol was sprayed onto the substrate anode surface at 250–300 °C by ESD. After sintering the deposited layer at 1250–1400 °C for 1–2 h depending on temperature, the cathode layer, consisting of lanthanum strontium manganate (LSM), was sprayed or brush coated onto the electrolyte layer. Performance tests and AC impedance measurements of the complete cell were carried out at 800 °C to evaluate the density and conductance of the electrolyte layer formed by ESD. With a 97% H2/3% H2O mixture and air as fuel and oxidant gas, respectively, the open-circuit voltage (OCV) was close to theoretical and electrolyte impedance was about 0.23Ω cm2. A power density of 0.45 W cm−2 at 0.62 V was obtained. No abnormal degradation was observed after 170 h operation. The electrolyte sintering temperature and time did not significantly affect the electrolyte impedance. on leave from  相似文献   

12.
The in-situ fabrication of an electron-blocking layer between the Ba-containing anode and the ceria-based electrolyte is an effective approach in suppressing the internal electronic leakage in ceria-based solid oxide fuel cell (SOFC). To improve the thickness of the electron-blocking layer and to research the effect of the layer thickness on the improvement of SOFC, a Ba-containing compound (0.6NiO-0.4BaZr0.1Ce0.7Y0.2O3-δ) modified by Y stabilized zirconia (YSZ) was employed as a composite anode in this research. SEM analyses demonstrated that the thickness of the interlayer can be simply controlled by regulating the proportion of YSZ at anode. The in-situ formed interlayer in the cell with the anode modified by 20?mol% YSZ possesses a thickness of 0.9?µm which is more suitable for the cell achieving an enhanced performance.  相似文献   

13.
The electrocatalytic activity of composite anodes, consisting of micron-scale sized Pt particles and nanocrystalline Ce0.8Gd0.2O2-δ(CGO) prepared by the cellulose-precursor technique, was evaluated for the oxidation of dry methane in a solid oxide fuel cell (SOFC) with zirconia-based electrolyte at 1173 K. Increasing current density above 100 mA/cm2 and the corresponding decrease of CH4/O2 ratio down to 2–3 suppressed carbon formation, but decreased CO/CO2 molar ratio in the product mixture to 0.3–0.9. The methane conversion rate was found to increase linearly with current, suggesting an increasing role of total CH4 oxidation by oxygen electrochemically supplied onto the anode surface. The results show that, although ceria-based anode components are well known to improve SOFC performance, their presence leads to high CO2 selectivity and thus seems inappropriate for the generation of synthesis gas in SOFC-type reactors.  相似文献   

14.
Electrostatic spray deposition (ESD) was applied to fabricate a thin-layer (3 m thickness) yttria-stabilized zirconia (YSZ) electrolyte on a solid oxide fuel cell (SOFC) anode substrate consisting of nickel-YSZ cermet. Reducing the thickness of a state-of-the-art electrolyte, and thereby reducing the cell internal IR drop, is a promising strategy to make the intermediate temperature SOFC (ITSOFC) operating at 600–800 °C possible. About 8 mol% YSZ colloidal solution in ethanol was sprayed onto the substrate anode surface at 250–300 °C by ESD. After sintering the deposited layer at 1250–1400 °C for 17–6 h, the cathode layer, consisting of lanthanum strontium manganate (LSM), was sprayed or brush coated onto the electrolyte layer. Performance tests on the cell were carried out at 800 °C to evaluate the electrolyte layer formed by ESD. With a 97 H2/3 H2O mixture and air as fuel and oxidant gas, respectively, open circuit voltage (OCV) was found to be close to the theoretical value.  相似文献   

15.
P. Fan  X. Zhang  D. Hua  G. Li 《Fuel Cells》2016,16(2):235-243
A challenge in the operation of solid oxide fuel cells (SOFCs) with hydrocarbon fuels is the carbon deposition on the nickel/yttria‐stabilized zirconia (Ni/YSZ) anode. The Grabke‐type kinetic model has been proposed for the carbon formation based upon the assumption of elementary steps, which consist of a rate‐limiting dissociative chemisorption step and a stepwise dehydrogenation of the chemisorbed methyl group. This work experimentally studied the carbon formation on a SOFC Ni/YSZ anode exposed to CH4+H2 gas mixtures. Experiments were conducted with various gas compositions of CH4/H2 and temperatures in the range from 873 K to 1,123 K. The experimental results were used to determine a kinetic model that was applied to the SOFC operating environments. Based on the experimental data, the formula for the carbon formation rate that is dependent on the operating temperature and the gas compositions of CH4/H2 was established.  相似文献   

16.
The performance of a conventional anode‐supported microtubular SOFC using doped ceria as an electrolyte and Ni‐based cermet as an anode is evaluated at low operating temperature between 294 and 542°C. An open‐circuit voltage (OCV) of >0.9 V is obtained at all measured operating temperatures, and power generation is observed at temperatures as low as 294°C. The power density of the cell is 0.6 W/cm2 at 542°C operating temperature with 47% fuel utilization and is 5 mW/cm2 at 294°C operating temperature with an open‐circuit voltage of 0.95 V. According to impedance spectroscopy, a greater influence of gas flow rate, on the cell performance, is observed at higher operating temperature.  相似文献   

17.
In recent years, the interest for using biogas derived from biomass as fuel in solid oxide fuel cells (SOFCs) has increased. To maximise the biogas to electrical energy output, it is important to study the effects of the main biogas components (CH4 and CO2), minor ones and traces (e.g. H2S) on performance and durability of the SOFC. Single anode‐supported SOFCs with Ni–Yttria‐Stabilised‐Zirconia (YSZ) anodes, YSZ electrolytes and lanthanum‐strontium‐manganite (LSM)–YSZ cathodes have been tested with a CH4–H2O–H2 fuel mixture at open circuit voltage (OCV) and 1 A cm–2 current load (850 °C). The cell performance was monitored with electric measurements and impedance spectroscopy. At OCV 2–24 ppm H2S were added to the fuel in 24 h intervals. The reforming activity of the Ni‐containing anode decreased rapidly when H2S was added to the fuel. This ultimately resulted in a lower production of fuel (H2 and CO) from CH4. Applying 1 A cm–2 current load, a maximum concentration of 7 ppm H2S was acceptable for a 24 h period.  相似文献   

18.
Using cost-effective fabrication methods to manufacture a high-performance solid oxide fuel cell (SOFC) is helpful to enhance the commercial viability. Here, we report an anode-supported SOFC with a three-layer Gd0.1Ce0.9O1.95 (gadolinia-doped-ceria [GDC])/Y0.148Zr0.852O1.926 (8YSZ)/GDC electrolyte system. The first dense GDC electrolyte is fabricated by co-sintering a thin, screen-printed GDC layer with the anode support (NiO–8YSZ substrate and NiO–GDC anode) at 1400°C for 5 h. Subsequently, two electrolyte layers are deposited via physical vapor deposition. The total electrolyte thickness is less than 5 μm in an area of 5 × 5 cm2, enabling an area-specific ohmic resistance as low as 0.125 Ω cm2 at 500°C (under open circuit voltage), and contributing to a power density as high as 1.2 W cm2 at 650°C (at an operating cell voltage of 0.7 V, using humidified [10 vol.% H2O] H2 as fuel and air as oxidant). This work provides an effective strategy and shows the great potential of using GDC as an electrolyte for high-performance SOFC at intermediate temperature.  相似文献   

19.
A novel design of single chamber solid oxide fuel cell (SC‐SOFC) microstack with cell‐array arrangement is fabricated and operated successfully in a methane–oxygen–nitrogen mixture. The small stack, consisting of five anode‐supported single cells connected in series, exhibits an open circuit voltage (OCV) of 4.74 V at the furnace temperature of 600 °C and a maximum power output of 420 mW (total active electrode area is 1.4 cm2) at the furnace temperature of 700 °C. A gas mixture of CH4/O2 = 1 leads to best performance and stability.  相似文献   

20.
The effects of palladium (Pd) on Sm0.2Ce0.8O2−δ coated Sr0.92Y0.08TiO3−δ (SDC/SYT) anodes were investigated for H2 and CH4 fuels. The electrochemical oxidations of both H2 and CH4 were accelerated by Pd impregnation. Moreover, Pd in the SDC/SYT (Pd-SDC/SYT) anode improved the cell performance by a factor of approximately 2 for H2 and 1.5 for CH4. The open circuit voltage (OCV) of the wet CH4 fuel increased with increasing temperature for both the SDC/SYT anode cell and Pd-SDC/SYT anode cell, which differs from that of the H2 fuel. Notably, the OCV values of the Pd-SDC/SYT anode cell using wet CH4 were much higher than those using wet H2. We observed differing potentials for the reformed gases after the out-of-cell catalyst experiment, and the CH4 fuel with the Pd-SDC catalyst layer agreed well with the OCVs of the Pd-SDC/SYT anode cell with directly introduced wet CH4 fuel. These results indicate the OCVs were higher than the theoretical values based on electrochemical hydrogen oxidation at increased temperatures in the Pd-SDC/SYT anode cell because of the lower water partial pressure caused by the increased steam reformation activity of Pd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号