首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ho3+/Yb3+‐codoped Bi2Ti2O7 pyrochlore thin films were prepared by a chemical solution deposition method, and their visible up‐conversion (UC) photoluminescence and dielectric relaxation were studied. Ho and Yb can be doped into Bi2Ti2O7 lattice and single pyrochlore phase is maintained. Intense visible UC photoluminescence can be observed under the excitation of a 980‐nm diode laser. Two UC emission bands centered at 551 nm and 665 nm in the spectra can be assigned to 5F4, 5S25I8 and 5F55I8 transitions of Ho3+ ions, respectively. The dependence of their UC emission intensity on pumping power indicates that both the green and red emissions of the thin films are two‐photon process. In addition, a Stokes near‐infrared emission centered at 1200 nm can be detected, which is due to 5I65I8 transition of Ho3+ ions. The thin films prepared on indium tin oxide–coated glass substrates exhibit a relatively high dielectric constant and a low dielectric loss as well as a good bias voltage stability. The dielectric relaxation of the thin films was also analyzed based on the temperature‐ and frequency‐dependent dielectric properties. This study suggests that Ho3+/Yb3+‐codoped Bi2Ti2O7 thin films are promising materials for developing multifunctional optoelectronic thin film devices.  相似文献   

2.
A series of novel SrLu2O4: x Ho3+, y Yb3+ phosphors (x=0.005‐0.05, y=0.1‐0.6) were synthesized by a simple solid‐state reaction method. The phase purity, morphology, and upconversion luminescence were measured by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. The doping concentrations and sintering temperature were optimized to be x=0.01, y=0.5 and T=1400°C to obtain the strongest emission intensity. Under 980 nm laser diode excitation, the SrLu2O4:Ho3+, Yb3+ phosphors exhibit intense green upconversion (UC) emission band centered at 541 nm (5F4,5S25I8) and weak red emission peaked at 673 nm (5F55I8). Under different pump‐power excitation, the UC luminescence can be finely tuned from yellow‐green to green light region to some extent. Based on energy level diagram, the energy‐transfer mechanisms are investigated in detail according to the analysis of pump‐power dependence and luminescence decay curves. The energy‐transfer mechanisms for green and red UC emissions can be determined to be two‐photon absorption processes. Compared with commercial NaYF4:Er3+, Yb3+ and common Y2O3:Ho3+, Yb3+ phosphors, the SrLu1.49Ho0.01Yb0.5O4 sample shows good color monochromaticity and relatively high UC luminescence intensity. The results imply that SrLu2O4:Ho3+, Yb3+ can be a good candidate for green UC material in display fields.  相似文献   

3.
Infrared quantum cutting involving Yb3+ 950–1,000 nm (2 F5/22 F7/2) and Ho3+ 1,007 nm (5S2,5F45I6) as well as 1,180 nm (5I65I8) emissions is achieved in BaGdF5: Ho3+, Yb3+ nanoparticles which are synthesized by a facile hydrothermal route. The mechanisms through first- and second-order energy transfers were analyzed by the dependence of Yb3+ doping concentration on the visible and infrared emissions, decay lifetime curves of the 5 F55I8, 5S2/5F45I8, and 5 F35I8 of Ho3+, in which a back energy transfer from Yb3+ to Ho3+ is first proposed to interpret the spectral characteristics. A modified calculation equation for quantum efficiency of Yb3+-Ho3+ couple by exciting at 450 nm was presented according to the quantum cutting mechanism. Overall, the excellent luminescence properties of BaGdF5: Ho3+, Yb3+ near-infrared quantum cutting nanoparticles could explore an interesting approach to maximize the performance of solar cells.  相似文献   

4.
《Ceramics International》2017,43(8):6333-6339
As alternatives to Yb3+-sensitized up-conversion (UC) materials excited at 980 nm, Nd3+-sensitized UC phosphors irradiated by 808 nm have been used to decrease the absorption of water and alleviate the overheating effect in vivo biological application. Intense red and green UC emissions from 5F55I8 and 5F4/5S25I8 transitions of Ho3+ appeared in Nd3+/Yb3+/Ho3+ tri-doped NaLa(MoO4)2 through successive energy transfer Nd3+→Yb3+→Ho3+ under 808 nm excitation, in which Yb3+ ions were proven to be the energy transfer bridge between Nd3+ and Ho3+ by lifetime measurement. The variable emission color and intensity ratios of red to green emissions were realized by adjusting the doping concentration of Yb3+, pulse width of the excitation laser and the addition of Ce3+ ion, which depends on the different population pathways to the green and red emitting states of Ho3+. The chromaticity modulation mechanisms of these approaches were proposed, which provides a feasible strategy to tune the UC emission color.  相似文献   

5.
《Ceramics International》2022,48(7):9248-9257
SrBi3.992-xHo0.008YbxTi4O15 (x = 0.000, 0.002, 0.004, 0.006, abbreviated as SBHT-xYb) multifunctional ceramics were fabricated by solid-phase reaction method. Their electrical, luminescence properties and electronic band structure were investigated. At x = 0.002, samples exhibit enhanced piezoelectric coefficient (d33 = 19 pC/N) and optimal thermal stability. Thermal annealing behavior shows that the d33 of SBHT-0.002 Yb at 460 °C remains 84% of its d33 value at room temperature (RT). Excited by 980 nm laser, the SBHT-xYb samples show two emission bands. Green emission at 548 nm and red emission at 658 nm are considered to be the transfer of two excited states 5S2 and 5F5 to the ground state 5I8 of Ho3+ ions, respectively. Furthermore, the electron band structure of SBHT-xYb ceramics was calculated using density functional theory (DFT). It is found that the energy consumed for electron transition first decreases and then increases, while the 4f orbital contributions of (Ho, Yb)3+ ions are enhanced by doping with Yb3+, elucidating the change in luminescence intensity in terms of microscopic mechanism. All the above results manifest that SBHT-xYb ceramics are good potential alternative for luminescence and piezoelectric properties integrated devices.  相似文献   

6.
《Ceramics International》2019,45(11):14205-14213
Monoclinic phase of BaY2F8:0.2Yb3+, xHo3+ (x = 0.005, 0.01, 0.02, 0.05 and 0.1 mol) and BaY2F8:yYb3+, 0.02Ho3+ (y = 0.01, 0.02, 0.05, 0.1 and 0.2 mol) phosphors were prepared by a facile precipitation method. Rietveld analysis was employed to carry out the structural refinement. The upconversion (UC) luminescence properties of BaY2F8:Yb3+, Ho3+ phosphor were investigated under near infra-red (NIR) excitation and the influence of dopant concentration on their spectra was also accessed. The possible UC processes and the energy transfer mechanisms between Yb3+ and Ho3+ were discussed on the basis of UC decay curves and the UC spectra obtained from a laser-pump power variation. The thermal stability of the BaY2F8:0.2Yb3+, 0.02Ho3+ phosphor was studied in the range of 30–300 °C. The color coordinates of the phosphor were located in the green region with very high color purity.  相似文献   

7.
Intense 2.0 μm emission of Ho3+ has been achieved through Yb3+ sensitization in fluorogermanate glass‐ceramic (GC) containing LaF3 pumped with 980 nm laser diode (LD). The observation of concurrent emissions at 538, 650, and 1192 nm points to the additional deexcitation routes based on infrared‐to‐visible upconversion processes and Ho3+:5I65I8 radiative transition. Comparative investigations of photoluminescent spectra and decay curves have indicated the effective role of Ce3+ ions in enhancing the 2.0 μm fluorescence along with suppressing the occurrence of these concurrent emissions. This would offer a promising approach to develop compact and efficient 2.0‐μm laser systems.  相似文献   

8.
《Ceramics International》2022,48(17):24550-24559
The development of laser technology has created intense demand for optical confinement materials with high performance. Herein the authors have been investigated Yb3+-singly doped and Yb3+/Nd3+-codoped SiO2-based oxyfluoride glasses in terms of their optical absorption, and their near-infrared (NIR) and up-conversion (UC) emissions including emission decay profiles. Under 808 nm laser diode (LD) excitation, four NIR emission bands were observed i.e., (Nd3+: 4F3/2 → 4I9/2, Yb3+: 2F5/2 → 2F7/2, Nd3+: 4F3/2 → 4I11/2, and Nd3+: 4F3/2 → 4I13/2) in co-doped glasses. NIR emission cross-sections [emi) stimulated, Memi) from Mc-cumber theory] were calculated for 2F5/2 → 2F7/2 (~1030 nm) transition of Yb3+ ion. σemi was found to be highest (26.27 × 10?21 cm2) for the Yb3+: 2F5/2 → 2F7/2 transition in N2 glass. UC emission spectra recorded at 980 nm LD show bands centered at 500, 536, 595 & 610, and 664 nm, attributed to 4G9/2 → 4I9/2, 4G7/2 → 4I9/2& 4G7/2 → 4I11/2, 4G5/2 → 4I9/2, and 4G9/2 → 4I13/2 transitions, respectively. Decay profiles were analyzed for Yb3+: 2F5/2 → 2F7/2 (~1030 nm) and Nd3+: 4F3/2 → 4I11/2 (~1057 nm) transitions at 808 nm LD. Energy transfer (ET) process from Nd3+ to Yb3+ in present glasses were detailed.  相似文献   

9.
Hexagonal Ho3+ doped NaYbF4 phosphors are synthesized via a hydrothermal method. The influence of Gd3+ and Ce3+ content on the phase structure and upconversion (UC) emission of NaYbF4 phosphors is investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UC spectra. The results of XRD and TEM indicate that the solubility of Ce3+ in hexagonal NaYbF4 is low due to the large difference of ionic radius between Ce3+ and Yb3+. With help of Gd3+ co-doping (15 mol%), pure hexagonal NaYbF4 phosphors with high doping concentration of Ce3+ (15 mol%) and small crystal size are obtained. When excited by a 980 nm laser diode, Ho3+ doped hexagonal NaYb0.85Gd0.15F4 phosphors exhibit strong green UC emission at 540 nm and weak red one at 646 nm. UC luminescence tuning from green emission to red emission is observed in hexagonal Ho3+ doped NaYb0.85Gd0.15F4 phosphors by co-doping with Ce3+ ions. The UC luminescence tuning phenomenon is attributed to two resonant energy transfer processes of 5S2/5F4(Ho3+)+2F5/2(Ce3+)→5F5(Ho3+)+5F7/2(Ce3+) and 5I6(Ho3+)+2F5/2(Ce3+)→5I7(Ho3+)+5F7/2(Ce3+) between Ho3+ and Ce3+, which suppress the green emission at 540 nm, while promote the red one at 646 nm.  相似文献   

10.
《Ceramics International》2023,49(7):10953-10960
Flame aerosol synthesis (FAS) is an excellent strategy for continuous, fast, and mass production of small-size upconversion nanoparticles (UCNPs), which have high potential applications in fields like biological imaging, colour display and optical temperature sensing. However, flame-made UCNPs have received less attention, and relevant studies are limited. Herein, for the first time, we successfully fabricated cerium (Ce)-doped homogeneous ultrasmall Y2O3:Yb3+/Ho3+ UCNPs using a liquid-fed FAS method. Ce was doped to improve the upconversion luminescence (UCL) of the Y2O3:Yb3+/Ho3+ UCNPs. The overall UCL intensity was enhanced ~77.9-fold for an optimal concentration of 20 mol% Ce-doped UCNPs, compared with the UCNPs without Ce doping with a relatively homogeneous ultrasmall size of 8–10 nm. Further studies confirmed that both trivalent (Ce3+) and tetravalent (Ce4+) simultaneously exist in the Y2O3 hosts and are critical in enhancing the UCL properties. In addition, the fluorescence intensity ratio (FIR) method was used to evaluate the thermal properties of the fabricated UCNPs. Ce doping significantly improved the thermal sensitivity of Y2O3:Yb3+/Ho3+ UCNPs. An excellent relative sensitivity (SR) of 0.622% K?1 at 598 K was obtained for flame-made UCNPs doped with 20 mol% Ce.  相似文献   

11.
Uniform spheres of (Yb0.98RE0.02)PO4 orthophosphate (RE=Ho, Er, and Tm, respectively) were synthesized via a homogeneous precipitation procedure mediated by SO42? anions. The as‐precipitated and 1100°C calcined products were determined via laser‐diffraction particle sizing to have the average diameters of ~2.04 ± 0.67 and 1.80 ± 0.93 μm, respectively. The upconversion luminescence of RE3+ under sensitization by the host Yb3+ was studied for the calcination products under 978 nm laser excitation, and it was found that the emissions are dominated by a red band at ~650 nm for Ho3+ (5F55I8 transition), similarly strong green (~515‐565 nm, 2H11/2/4S3/24I15/2 transition) and red (~640‐680 nm, 4F9/24I15/2 transition) bands for Er3+, and a near‐infrared band at ~800 nm for Tm3+ (3H43H6 transition). The number of laser photons needed to populate the emitting state was determined by varying the excitation power, and the possible photon reactions leading to the observed upconversion were discussed.  相似文献   

12.
《Ceramics International》2023,49(6):9574-9583
Here we adopt trivalent lanthanide (Ln3+ = Er3+, Er3+/Ho3+, and Yb3+/Tm3+) doped Sr2LaNbO6 (SLNO) as novel upconversion luminescence (UCL) materials for achieving UCL and optical temperature sensing under 980 nm excitation. Specifically, Er3+ single doped Sr2LaNbO6 phosphors present bright high-purity green emission under the 980 nm excitation. While co-doping with the Ho3+ ions, the component of red emission from Er3+ ions increases significantly and sample show a remarkable enhancement of luminescent intensity relative to SLNO:Er3+ sample. The above-mentioned phosphors and Yb3+/Tm3+ co-doped phosphor (blue emission) successfully achieve high-purity trichromatic UCL and mixed white light output in the same host. Furthermore, the temperature sensing performance of the SLNO:Er3+/Ho3+ phosphor based on the fluorescence intensity ratio (FIR) is systematically studied for the first time. The temperature sensing based on the non-thermal coupling levels (NTCLs) exhibit higher sensitivity than that based on the thermal coupling levels (TCLs). The maximum absolute and relative sensitivity for 4F9/2/4I9/2 NTCLs reach 0.16803 K?1 at 427 K and 0.01591 K?1 at 641 K, respectively. Interestingly, NIR emission of 4I9/2 → 4I15/2 transition presents a thermal enhancement, while visible emissions show thermal quenching. These results indicate that the Ln3+ doped Sr2LaNbO6 UCL phosphors have potential applications in the fields of non-contact temperature sensors, full-color displays, and anti-counterfeiting.  相似文献   

13.
《Ceramics International》2023,49(8):12301-12308
Tellurite glasses doped with Tm3+, Ho3+ and Ce3+ ions were prepared via melt-quenching to realise broadband and fluorescence enhancement in near-infrared (NIR) band. Under the pumping of a commercial 808 nm laser diode (LD), the emission bands at 2.0 μm, 1.85 μm, 1.47 μm, and 705 nm were observed in the Tm3+/Ho3+ co-doping glass samples, which originated from the transitions of Ho3+:5I75I8 and Tm3+:3F43H6, 3H43F4, 3F2,3 → 3H6, respectively. The existence of 2.0 μm band fluorescence is due to the energy transfer from the Tm3+:3F4 level to the Ho3+:5I7 level. This band overlaps with the 1.85 μm band which forms a broadband fluorescence spectrum in the range of 1600–2200 nm. In glass samples co-doped with Tm3+/Ho3+ with 0.085 mol% Ho2O3 and 1 mol% Tm2O3, the full width at half maximum (FWHM) of this broadband spectrum (1600–2200 nm) was as high as ∼370 nm. After introducing 0.6 mol% CeO2, the emission intensity of broadband fluorescence increased by ∼50%, which was caused by the cross-relaxations between Ce3+ and Tm3+ ions. The lifetime of fluorescence decay was determined to prove the interactions among the doped rare-earth ions, the radiative parameters such as transition probability, branching ratio and radiative lifetime were calculated from the absorption spectra based on the Judd-Ofelt theory to better understand the observed luminescence phenomena. In addition, X-ray diffraction (XRD) confirmed the amorphous state structure of the synthesised glass samples, while Raman spectrum revealed the different vibrational structural units forming the glass network.  相似文献   

14.
《Ceramics International》2017,43(14):10881-10888
A series of co-doped (Yb3+/Er3+): Li2O-LiF-B2O3-ZnO glasses were prepared by standard melt quenching technique. Structural and morphological studies were carried out by XRD and FESEM. Phonon energy dynamics have been clearly elucidated by Laser Raman analysis. The pertinent absorption bands were observed in optical absorption spectra of singly doped and co-doped Yb3+/Er3+: LBZ glasses. We have been observed a strong up-conversion red emission pertaining to Er3+ ions at 1.0 mol% under the excitation of 980 nm. However, the up-conversion and down conversion (1.53 µm) emission intensities were remarkably enhanced with the addition of Yb3+ ions to Er3+: LBZ glasses due to energy transfer from Yb3+ to Er3+. Up-conversion emission spectra of co-doped (Yb3+/Er3+): LBZ glasses exhibits three strong emissions at 480 nm, 541 nm and 610 nm which are assigned with corresponding electronic transitions of 2H9/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 respectively. Consequently, the green to red ratio values (G/R) also supports the strong up-conversion emission. The Commission International de E′clairage coordinates and correlated color temperatures (CCT) were calculated from their up-conversion emission spectra of co-doped (Yb3+/Er3+): LBZ glasses. The obtained chromaticity coordinates for optimized glass (0.332, 0.337) with CCT value at 5520 K are very close to the standard white colorimetric point in cool white region. These results could be suggested that the obtained co-doped (Yb3+/Er3+): LBZ glasses are promising candidates for w-LEDs applications.  相似文献   

15.
A series of Er3+/Yb3+ co-doped Cs3GdGe3O9 (CGG) phosphors were prepared by solid-phase sintering method, and the microstructure and upconversion luminescence (UCL) properties were tested by variable-temperature X-ray diffractometry and variable-temperature spectrometer. Abnormal UCL phenomena were found, which include UCL intensity continuously increasing under 980 nm laser continuous irradiation and UCL thermal enhancement. After 10 min of continuous irradiation by 980 nm laser at 513 K, the UCL intensity increased 2.91 times compared with the initial UCL intensity. The phenomenon is due to the electron releasing of host defects. The green UCL intensity of CGG:0.1Er3+/0.2Yb3+ decreases at 303–423 K and increases at 423–723 K, which reaches 13.23 times compared with that at 423 K. The phenomenon is due to Er3+–Yb3+ distance change by temperature and phonon-assisted transitions. In addition, the absolute temperature sensitivities of samples are calculated by luminescence intensity ratio technology, the maximum absolute sensitivity of CGG:0.1Er3+/0.4Yb3+ is 0.00691 K−1 at 546 K, and the maximum relative sensitivity of CGG:0.1Er3+/0.1Yb3+ is 0.01224 K−1 at 303 K. These results indicate that CGG:Er3+/Yb3+ phosphors can be used as a high-temperature optical thermometer.  相似文献   

16.
Multicolor upconversion luminescence materials show significantly applications in materials science. In this paper, the novel Yb3+-sensitized Na3La(VO4)2 upconversion luminescence crystals are synthesized by the solid-state reaction method. Three primary colors upconversion luminescence are successfully achieved in Na3La(VO4)2:Yb3+,Tm3+, Na3La(VO4)2:Yb3+,Er3+, and Na3La(VO4)2:Yb3+,Ho3+ crystals excited by the single 980 nm LD. Multicolor upconversion luminescence can be obtained by simply adjusting the combination ratios of these three samples. Luminescence mechanisms of the Yb3+-sensitized system are discussed in detail. In the Na3La(VO4)2 host material, the Yb3+/Ho3+ codoped system exhibits unusual red upconversion luminescence based on the short decay time of Ho3+ ion 5I6 level, which provides the possibility of three primary color luminescence under 980 nm excitation.  相似文献   

17.
Novel up‐conversion (UC) luminescent nanopowders, Sr2CeO4:Yb3+,Ln3+ (Ln = Er, Tm, Ho) were prepared with Pechini method. The Sr2CeO4:Yb3+,Ln3+ (Ln = Er, Tm, Ho) nanopowders had an orthorhombic crystal structure, and showed olive‐like morphology with the length of about 260 nm and width of about 130 nm. Under 980 nm lazer excitation, the Sr2CeO4:Yb3+/Er3+, Sr2CeO4:Yb3+/Tm3+, and Sr2CeO4:Yb3+/Ho3+ nanophosphors exhibit strong green, blue, and green UC luminescence, respectively. The luminescence mechanisms for the doped lanthanide ions were thoroughly analyzed.  相似文献   

18.
《Ceramics International》2016,42(4):4642-4647
Tunable up-conversion luminescent material KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) has been synthesized by a typical hydrothermal process. Under 980 nm laser diode (LD) excitation, the emission intensity and the corresponding luminescence colors of KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) have been investigated in detail. The energy transfer from the Yb3+ sensitizer to Ho3+, Er3+ and Tm3+ activators plays an important role in the development of color-tunable single- phased phosphors. The emission intensity keep balance through control of the Ho3+ co-doping concentrations, white light was experimentally shown at KY(MoO4)2: 20 mol% Yb3+, 0.8 mol% Er3+, 0.5 mol% Tm3+, 1.0 mol% Ho3+ phosphor with further calcination at 800 °C for 4 h under 980 nm laser excitation. The color tunability, high quality of white light and high intensity of the emitted signal make these up-conversion (UC) phosphors excellent candidates for applications in solid-state lighting.  相似文献   

19.
《Ceramics International》2020,46(3):3345-3352
The luminescent characteristics of spherical titanium dioxide (TiO2) nanoparticles (NP's) doped with Sm3+/Yb3+ and Tm3+/Yb3+ with and without a silica coating were analyzed. These nanoparticles were synthesized using the spray pyrolysis technique and coated with silica through a wet chemical process. The Sm3+/Tm3+ and Yb3+ doping induces a triphasic poly-crystalline structure of rutile and anatase TiO2 and a Sm2Ti2O7/Tm2Ti2O7 cubic phase. A Williamson-Hall analysis was used to monitor the tensions of the NP's crystallites at the various doping concentrations and with addition of the silica shell. The luminescent spectra presented the characteristic emission peaks for the electronic energy levels transitions of the Sm3+/Tm3+ and Yb3+ ions. The Sm3+/Yb3+ co-doped NP's showed a maximum emission peak in the visible region at 612 nm, associated with 4G5/26H7/2 transitions of the Sm3+ ions. The IR emission peak at 973 nm (2F5/22F7/2) pertaining to Yb3+. For the combination of Tm3+/Yb3+, two emissions associated with Tm3+ ions were observed at 440 nm (1D23F4) and 806 nm (3H43H6). The emission at 973 nm (2F5/22F7/2) is correlated to the Yb3+ ions. Silica coating of the NP's resulted in luminescence emission intensity increase of about 4 times.  相似文献   

20.
《Ceramics International》2022,48(5):6007-6015
The luminescent characteristics of spherical hafnia/silica (HfO2/SiO2) nanoparticles (NP?s) co-doped with Tb3+/Yb3+ were analysed. These NP?s were synthesized using the spray pyrolysis technique. The addition of SiO2 and Tb3+/Yb3+ was found to induce a cubic phase in HfO2. The luminescent spectra presented the characteristic emission peaks for inter-electronic energy levels transitions of the Tb3+ and Yb3+ ions, with an excitation band centred at 270 nm. Under solid-state laser excitation at 980 nm an upconversion emission related to the Tb3+ ion was observed. The maximum emission peak in the visible region was at 543 nm, associated with 5D47F5 transitions of the Tb3+ ions and an IR emission peak at 970 nm (2F5/2 → 2F7/2) pertaining to Yb3+, with irradiation at 270 nm (UV). The energy transfer mechanism from Tb3+→Yb3+ (excitation at 270 nm), is discussed based on the time decay of the luminescence intensity analysis and the energy transfer efficiency (ηET) and was determined to be in the range of 29.2% to40.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号