首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uncoupling of the growth hormone (GH) axis in early postpartum dairy cows is correlated with a decrease in liver GH receptor (GHR) 1A mRNA and a decrease in liver GH receptor protein. Postpartum recoupling of the GH axis is also correlated with GHR 1A mRNA and GHR protein. We hypothesized that dry matter intake (DMI) partially controls the increase in GHR 1A mRNA postpartum. Prepartum Holstein dairy cows (n = 11) were offered feed ad libitum. After calving, 6 cows were fed 70% of their expected DMI (feed restriction) for 14 d and 5 cows were fed ad libitum (control). Both groups were fed ad libitum after d 14. Liver was biopsied prepartum and on d 1, 7, 14, and 21 postpartum; blood was sampled throughout the experimental period. Rate of increase in postpartum milk production was less for feed-restricted cows. The GHR 1A mRNA decreased from prepartum to d 1 postpartum and subsequently increased. Rate of postpartum increase in GHR 1A mRNA was less in feed-restricted cows. Diminished GHR 1A persisted for at least 7 d after feed-restricted cows returned to ad libitum feeding. Liver insulin-like growth factor-I mRNA concentrations decreased from prepartum to d 1 as well, but were similar for feed restricted and control thereafter. We concluded that DMI partially controls GHR 1A mRNA expression in early postpartum dairy cows and that the decrease in GHR 1A in response to feed restriction persisted for at least 1 wk after ad libitum feeding was restored.  相似文献   

2.
3.
4.
5.
6.
The ability of dairy cattle to adapt to changes in nutrient intake requires appropriately responsive expression of several key genes in liver. Holstein cows were used in 2 experiments to determine the effect of short-term feed restriction on expression of mRNA for gluconeogenic and ureagenic enzymes in liver. In experiment 1, cows were fed a total mixed diet for ad libitum intake for a 5-d period followed by 5 d of 50% of their previous 5-d ad libitum intake followed by 10 d of ad libitum feeding. Liver biopsies and blood samples were obtained on d 5, 10, and 20 of the experiment, the last day of each feeding period. Pyruvate carboxylase (PC) mRNA increased with feed restriction, but phosphoenolpyruvate carboxykinase (PEPCK) was unchanged. Expression of carbamoyl phosphate synthetase (CPS-I), argininosuccinate synthetase, and ornithine transcarbamylase mRNA were not altered by feed restriction; however, CPS-I mRNA expression tended to increase during realimentation. In experiment 2, cows were fed for ad libitum intake for 5 d and then fed 50% of previous intake for 5 d. Liver biopsy samples collected on d 5 and 10 were used for PC mRNA, PEPCK mRNA, and in vitro measure of gluconeogenesis from radiolabelled propionate and lactate. The data indicate expression of genes for key metabolic processes in liver of lactating cows is responsive to feeding level. Expression of PC mRNA is part of the adaptive response to feed intake restriction and is matched by increased capacity for gluconeogenesis from lactate.  相似文献   

7.
Eight Holstein cows were used to investigate the effects of DM intake and sodium bicarbonate on lactational performance and concentrations of hormones and metabolites in plasma. Cows were fed a diet with or without 1.0% sodium bicarbonate (dry matter basis) in a switchback design. Four cows were fed ad libitum and four cows were fed approximately 80% of their recommended nutrient requirements by restriction of DM intake throughout the three 21-d periods. Supplementing the diet with sodium bicarbonate increased DM intake of cows fed ad libitum. There was a feed intake by sodium bicarbonate interaction for production of 4% FCM. This interaction may be explained by the difference in DM intake of cows fed ad libitum or restricted amounts of feed and supplemented with sodium bicarbonate. Cows fed restricted amounts of feed had lower milk, milk fat, milk protein, milk SNF, and milk energy yields. Restriction of feed intake increased plasma concentrations of somatotropin and nonesterified fatty acids but decreased concentrations of insulin, triidothyronine, thyroxine, glucagon, and prolactin. In contrast, feeding supplemental sodium bicarbonate did not affect concentrations of hormones or metabolites in plasma at either feed intake.  相似文献   

8.
Ad libitum milk feeding and butyrate (B) supplementation have the potential to stimulate postnatal growth and development in calves. The somatotropic axis is the main endocrine regulator of postnatal growth and may be affected by both ad libitum milk replacer (MR) feeding and B supplementation in calves. We hypothesized that ad libitum MR feeding and B supplementation stimulate systemic and hepatic insulin-like growth factor (IGF)-I and IGF binding proteins (IGFBP) in preweaning calves. Sixty-four (32 male, 32 female) Holstein calves were examined from birth until wk 11 of life. Calves received MR either ad libitum (Adl) or restrictively (6 L/d; Res). In each feeding group half of the calves received a MR with 0.24% butyrate and the other half received same MR without butyrate. Ad libitum MR feeding was performed from d 4 until wk 8 of age. From wk 9 to 10, Adl and Res calves were gradually weaned and were fed 2 L/d until the end of the trial. Concentrate, hay, and water were freely available. Feed intake was measured daily and body weight weekly. Blood samples for analyzing plasma concentrations of glucose, insulin, IGF-I, and IGFBP-2, -3, and -4 were taken on d 1, 2, 4, and 7, then weekly or every other week (IGFBP) until wk 11 of life. Liver samples were taken on d 50 and at the end of the study (d 80) to measure gene expression of the growth hormone receptor 1A (GHR1A), IGF1, IGFBP1 to 4, and of the IGF Type 1 and insulin receptor in the liver. Intake of MR and body weight were greater, but concentrate intake was lower in Adl than in Res. Plasma concentrations of IGF-I and IGFBP-3 were greater and plasma concentration of IGFBP-2 was lower in Adl than in Res during the ad libitum milk feeding period. After reduction of MR in both groups to 2 L/d plasma concentrations of IGF-I and IGFBP-4 were lower and plasma concentration of IGFBP-2 was higher in Adl than in Res. Supplementation of B depressed plasma IGF-I from wk 1 to 4 and in wk 9. On d 50, mRNA abundance of the GHR1A and IGF1 was greater and of IGFBP2 mRNA was lower in Adl than in Res. At d 80, IGFBP2 mRNA was greater in Adl than in Res, and IGFBP2 mRNA increased with B supplementation. Ad libitum MR feeding stimulated the systemic and hepatic IGF system and mirrored the greater growth rate during the ad libitum MR feeding, whereas butyrate supplementation partly reduced the systemic and hepatic IGF system.  相似文献   

9.
The aim of this study was to reduce voluntary dry matter intake (DMI) to increase feeding efficiency of preclassified inefficient (INE) dairy cows through restricted feeding. We studied the effects of dietary restriction on eating behavior, milk and energy-corrected milk (ECM) production, in vivo digestibility, energy balance, and measures of feed efficiency [residual feed intake (RFI) and ECM/DMI]. Before the experiment, 12 pairs of cows were classified as INE. The 2 dietary treatments consisted of ad libitum feeding versus restricted feeding of the same total mixed ration containing 36.5% roughage. Inefficient cows fed the restricted total mixed ration had a shorter eating time and lower meal and visit frequency, but a similar rate of eating, meal size, and meal duration compared with INE cows fed ad libitum. Compared with the INE cows fed ad libitum, restricted INE cows had 12.8% lower intake, their dry matter and neutral detergent fiber digestibility remained similar, and their ECM yield was 5.3% lower. Feed efficiency, measured as RFI, ECM/DMI, and net energy retained divided by digestible energy intake, was improved in the restricted INE cows as compared with the ad libitum cows. Our results show that moderate DMI restriction has the potential to improve feed efficiency of preclassified INE cows.  相似文献   

10.
Limit-feeding dry cows a high-energy diet may enable adequate energy intake to be sustained as parturition approaches, thus reducing the extent of negative energy balance after parturition. Our objective was to evaluate the effect of dry period feeding strategy on plasma concentrations of hormones and metabolites that reflect energy status. Multiparous Holstein cows (n = 18) were dried off 45 d before expected parturition, paired by expected calving date, parity, and previous lactation milk yield, and randomly assigned to 1 of 2 dry-period diets formulated to meet nutrient requirements at ad libitum or limited intakes. All cows were fed the same diet for ad libitum intake after parturition. Prepartum dry matter intake (DMI) for limit-fed cows was 9.4 kg/d vs. 13.7 kg/d for cows fed ad libitum. During the dry period, limit-fed cows consumed enough feed to meet calculated energy requirements, and ad libitum-fed cows were in positive calculated net energy for lactation (NEL) balance (0.02 vs. 6.37 Mcal/d, respectively). After parturition, milk yield, milk protein concentration, DMI, body condition score, and body weight were not affected by the prepartum treatments. Cows limit fed during the dry period had a less-negative calculated energy balance during wk 1 postpartum. Milk fat concentration and yield were greater for the ad libitum treatment during wk 1 but were lower in wk 2 and 3 postpartum. Plasma insulin and glucose concentrations decreased after calving. Plasma insulin concentration was greater in ad libitum-fed cows on d −2 relative to calving, but did not differ by dietary treatment at other times. Plasma glucose concentrations were lower before and after parturition for cows limit-fed during the dry period. Plasma nonesterified fatty acid concentrations peaked after parturition on d 1 and 4 for the limit-fed and ad libitum treatments, respectively, and were greater for limit-fed cows on d −18, −9, −5, and −2. Plasma tumor necrosis factor-α concentrations did not differ by treatment in either the pre- or postpartum period, but tended to decrease after parturition. Apart from a reduction in body energy loss in the first week after calving, limit feeding a higher NEL diet during the dry period had little effect on intake and milk production during the first month of lactation.  相似文献   

11.
Hormones and metabolites act as satiety signals in the brain and play an important role in the control of feed intake (FI). These signals can reach the hypothalamus and brainstem, 2 major centers of FI regulation, via the blood stream or the cerebrospinal fluid (CSF). During the early lactation period of high-yielding dairy cows, the increase of FI is often insufficient. Recently, it has been demonstrated that insulin-like growth factors (IGF) may control FI. Thus, we asked in the present study if IGF-binding proteins (IGFBP) are regulated during the periparturient period and in response to feed restriction and therefore might affect FI as well. In addition, we specifically addressed conditional distribution of IGFBP in plasma and CSF. In one experiment, 10 multiparous German Holstein dairy cows were fed ad libitum and samples of CSF and plasma were obtained before morning feeding on d −20, −10, +1, +10, +20, and +40 relative to calving. In a second experiment, 7 cows in second mid-lactation were sampled for CSF and plasma after ad libitum feeding and again after feeding 50% of the previous ad libitum intake for 4 d. Intact IGFBP-2, IGFBP-3, and IGFBP-4 were detected in plasma by quantitative Western ligand blot analysis. In CSF, we were able to predominantly identify intact IGFBP-2 and a specific IGFBP-2 fragment containing detectable binding affinities for biotinylated IGF-II. Whereas plasma concentrations of IGFBP-2 and IGFBP-4 increased during the periparturient period, IGFBP-3 was unaffected over time. In CSF, concentrations of IGFBP-2, both intact and fragmented, were not affected during the periparturient period. Plasma IGF-I continuously decreased until calving but remained at a lower concentration in early lactation than in late pregnancy. Food restriction did not affect concentrations of IGF components present in plasma or CSF. We could show that the IGFBP profiles in plasma and CSF are clearly distinct and that changes in IGFBP in plasma do not simply correspond in the brain. We thus assume independent control of IGFBP distribution between plasma and CSF. Due to the known anorexic effect of IGF-I, elevated plasma concentrations of IGFBP-2 and IGFBP-4 during the postpartum period in conjunction with reduced plasma IGF-I concentrations may be interpreted as an endocrine response against negative energy balance in early lactation in dairy cows.  相似文献   

12.
Two experiments were conducted to evaluate if supplementing rumen-protected choline (RPC; Reashure, Balchem Encapsulates, Slate Hill, NY) could prevent or alleviate fatty liver in dairy cattle. The first experiment evaluated the effect of supplementing RPC on hepatic triacylglycerol (TAG) accumulation during fatty liver induction. Twenty-four dry cows between 45 to 60 d prepartum were paired by body weight (BW) and body condition score (BCS) and randomly assigned to control or supplementation with 15 g of choline as RPC/d. From d 0 to 6, before treatment application, all cows were fed 1.4 kg/d of concentrate and forage ad libitum. Samples of blood and liver, obtained during the pretreatment period, were used for covariate adjustment of blood metabolites and liver composition data. During fatty liver induction (d 7 to 17), cows were fed 1.4 kg/d of concentrate with or without supplementation with RPC, and forage intake was restricted, so cows consumed 30% of the total energy requirements for pregnancy and maintenance. Supplementation with RPC during fatty liver induction did not affect plasma glucose and plasma β-hydroxybutyrate (BHBA) concentration but did decrease plasma nonesterified fatty acid (NEFA; 703 vs. 562 μEq/L, SE = 40) and liver TAG accumulation (16.7 vs. 9.3 μg/μg of DNA, SE = 2.0). In the second experiment, we evaluated the effect of supplementing RPC on the clearance of liver TAG when cows were fed ad libitum after the induction of fatty liver by feed restriction. Twenty-eight cows between 45 and 60 d prepartum were paired according to BCS and BW and assigned to treatments. Fatty liver was induced by feeding 1.4 kg/ d of concentrate (without RPC) and restricting forage intake, so cows consumed 30% of maintenance and pregnancy energy requirements for 10 d. From d 11 to 16, after feed restriction, cows were fed forage ad libitum and 1.4 kg/d of concentrate with or without RPC. Treatments were not applied during fatty liver induction; however, following feed restriction, liver for cows assigned to control and RPC treatments contained 6.8 and 12.7 μg of TAG/μg of DNA, respectively. Measurements obtained before treatment served as covariates for statistical analysis. During the depletion phase, plasma glucose, BHBA, and NEFA were not affected by treatment. Liver TAG, expressed as covariate adjusted means, was 6.0 and 4.9 μg/μg of DNA (SE = 0.4) on d 13, and 5.0 and 1.5 μg/μg of DNA (SE = 0.9) on d 16 for control and RPC, respectively. Rumen-protected choline can prevent and possibly alleviate fatty liver induced by feed restriction.  相似文献   

13.
Feed restriction and dietary 1,3-butanediol were used with lactating goats in an attempt to induce metabolic changes characteristic of bovine lactation ketosis and fatty liver. In Experiment 1, midlactation goats were fed 80, 102, or 114% of metabolizable energy requirements and 0, 50, or 100 g/d of 1,3-butanediol. Concentration of beta-hydroxybutyrate in blood plasma decreased with increasing metabolizable energy but was increased greatly at 2 h after goats were fed 50 or 100 g butanediol and remained elevated at 6 h postfeeding with 100 g of butanediol. Concentration of glucose in plasma was decreased at 2 and 6 h postfeeding in goats fed 100 g of butanediol. In Experiment 2, goats in early lactation were fed for ad libitum intake or were restricted to 70% of ad libitum intake with 1,3-butanediol included at 10% of diet DM. The treatment decreased milk production, increased concentrations of beta-hydroxybutyrate and nonesterified fatty acids, and decreased the concentration of insulin and the insulin to glucagon ratio in plasma. Concentrations of glucose, acetate, and glucagon in plasma were not affected. After 28 d of treatment, concentration of total lipid in liver was increased, but concentrations of glycogen and triglyceride were unaffected. Changes caused in goats by feed restriction plus dietary 1,3-butanediol were characteristic of subclinical lactation ketosis in cows, but the response was more moderate than seen previously in cows.  相似文献   

14.
Nutritional management during the dry period may affect susceptibility of cows to metabolic and infectious diseases during the periparturient period. Thirty-five multiparous Holstein cows were used to determine the effect of prepartum intake, postpartum induction of ketosis, and periparturient disorders on metabolic status. Cows were fed a diet from dry-off to parturition at either ad libitum intake or restricted intake [RI; 80% of calculated net energy for lactation (NEL) requirement]. After parturition, all cows were fed a lactation diet. At 4 d in milk (DIM), cows underwent a physical examination and were classified as healthy or having at least one periparturient disorder (PD). Healthy cows were assigned to the control (n = 6) group or the ketosis induction (KI; n = 9) group. Cows with PD were assigned to the PD control (PDC; n = 17) group. Cows in the control and PDC groups were fed for ad libitum intake. Cows in the KI group were fed at 50% of their intake on 4 DIM from 5 to 14 DIM or until signs of clinical ketosis were observed; then, cows were returned to ad libitum intake. During the dry period, ad libitum cows ate more than RI cows; the difference in intake resulted in ad libitum cows that were in positive energy balance (142% of NEL requirement) and RI cows that were in negative energy balance (85% of NEL requirement). Prepartum intake resulted in changes in serum metabolites consistent with plane of nutrition and energy balance. Prepartum intake had no effect on postpartum intake, serum metabolites, or milk yield, but total lipid content of liver at 1 d postpartum was greater for ad libitum cows than for RI cows. The PD cows had lower intake and milk yield during the first 4 DIM than did healthy cows. During the ketosis induction period, KI cows had lower intake, milk yield, and serum glucose concentration but higher concentrations of nonesterified fatty acids and β-hydroxybutyrate in serum as well as total lipid and triacylglycerol in liver than did control cows. Cows with PD had only modest alterations in metabolic variables in blood and liver compared with healthy cows. The negative effects of PD and KI on metabolic status and milk yield were negligible by 42 DIM, although cows with PD had lower body condition score and BW. Prepartum intake did not affect postpartum metabolic status or milk yield. Periparturient disorders and induction of ketosis negatively affected metabolic status and milk yield during the first 14 DIM.  相似文献   

15.
Previous research in our laboratory showed that dietary fat supplementation during the dry period was associated with decreased peripartum hepatic lipid accumulation. However, fat supplementation decreased dry matter (DM) intake and thereby confounded results. Consequently, 47 Holstein cows with body condition scores (BCS) ≤ 3.5 at dry-off were used to determine whether source or amount of energy fed to dry cows was responsible for the decreased hepatic lipid content. Moderate grain- or fat-supplemented diets [1.50 Mcal of net energy for lactation (NEL)/kg] were fed from dry-off (60 d before expected parturition) to calving at either ad libitum (160% of NEL requirement) or restricted (80% of NEL requirement) intakes. Postpartum, cows were fed a single lactation diet for ad libitum intake and performance was measured for 105 d. Prepartum intakes of DM and NEL were significantly lower for feed-restricted cows as designed. During the first 21 d postpartum, previously restricted cows had higher intakes of DM and NEL. Body weights and BCS were lower prepartum for restricted cows but groups converged to similar nadirs postpartum. Restricted-fed cows had lower concentrations of glucose and insulin and increased concentrations of NEFA in plasma during the dry period. Peripartum NEFA rose markedly for all treatments but were higher postpartum for cows previously fed ad libitum. Plasma concentrations of NEFA and BHBA remained lower in cows restricted-during the dry period. Postpartum concentrations of total lipid and triglyceride in liver were lower in cows previously feed-restricted. Across dietary treatments, activity of carnitine palmitoyltransferase (CPT) in hepatic mitochondria was lowest at − 21 d, highest at 1 d, and decreased at 21 and 65 d relative to parturition. The activity of CPT at d 1 tended to be higher for previously feed-restricted cows; thereafter, CPT activity declined more rapidly than in cows fed ad libitum. Nutrient intake during the dry period had more pronounced effects on peripartal lipid metabolism and DMI than did composition of the prepartum diet.  相似文献   

16.
Previous research has shown that a combination of feed restriction and dietary 1,3-butanediol starting at 14 d post-partum resulted in fatty liver and ketosis. Sixteen multiparous Holstein cows were used to determine effects of feed restriction or 1,3-butanediol as separate treatments. Treatments during d 14 to 42 postpartum were 1) control (ad libitum intake), 2) 20% feed restriction, or 3) control plus dietary 1,3-butanediol (5.5% of DM). From d 43 to 56, cows assigned to treatments 2 and 3 received a combination of feed restriction and butanediol. One cow on treatment 2 developed ketosis, but not fatty liver, after only 4 d of feed restriction. No other cows developed fatty liver or ketosis. Both treatments decreased milk production compared with controls. Feed restriction increased the extent of negative energy balance and caused transient increases in concentrations of NEFA, acetate, and beta-hydroxybutyrate in plasma. Concentrations of beta-hydroxybutyrate and insulin in plasma were increased by butanediol, which is a potent ketone body precursor. Concentration of glycogen in liver was less in feed-restricted cows, whereas glycogen and total lipid were greater in cows given butanediol separately. Gluconeogenic capacity of liver slices was not different among groups. Addition of 1,3-butanediol to in vitro incubation media decreased oxidation of propionate to CO2. Neither feed restriction nor dietary 1,3-butanediol as separate treatments induced the fatty liver and ketosis observed in earlier experiments in which the two treatments were given together.  相似文献   

17.
In dairy cows, feed restriction is known to decrease milk yield by reducing the number of mammary epithelial cells (MEC) in the udder through a shift in the MEC proliferation–apoptosis balance, by reducing the metabolic activity of MEC, or both. The exfoliation of MEC from the mammary epithelium into milk is another process that may participate in regulating the number of MEC during feed restriction. The aim of the present study was to clarify the mechanisms that underlie the milk yield loss induced by feed restriction. Nineteen Holstein dairy cows producing 40.0 ± 0.7 kg/d at 77 ± 5 d in milk were divided into a control group (n = 9) and a feed-restricted group (n = 10). Ad libitum dry matter intake (DMI) was recorded during a pre-experimental period of 2 wk. For 29 d (period 1), cows were fed either 100 (control) or 80% (feed-restricted) of their ad libitum DMI measured during the pre-experimental period. Then, all cows were fed ad libitum for 35 d (period 2). Milk production and DMI were recorded daily. Blood and milk samples were collected once during the pre-experimental period; on d 5, 9, and 27 of period 1; and on d 5, 9, and 30 of period 2. Mammary epithelial cells were purified from milk using an immunomagnetic method to determine the rate of MEC exfoliation. Mammary tissue samples were collected by biopsy at the end of each period to analyze the rates of cell proliferation and apoptosis and the expression of genes involved in synthesizing constituents of milk. Feed restriction decreased milk yield by 3 kg/d but had no effect on rates of proliferation and apoptosis in the mammary tissue or on the expression of genes involved in milk synthesis. The daily MEC exfoliation rate was 65% greater in feed-restricted cows than in control cows. These effects in feed-restricted cows were associated with reduced insulin-like growth factor-1 and cortisol plasma concentrations. When all cows returned to ad libitum feeding, no significant difference on milk yield or MEC exfoliation rate was observed between feed-restricted and control cows, but refeeding increased prolactin release during milking. These results show that the exfoliation process may play a role in regulating the number of MEC in the udders of dairy cows during feed restriction without any carryover effect on their milk production.  相似文献   

18.
The liver has an important role in metabolic regulation and control of the somatotropic axis to adapt successfully to physiological and environmental changes in dairy cows. The aim of this study was to investigate the adaptation to negative energy balance (NEB) at parturition and to a deliberately induced NEB by feed restriction at 100 days in milk. The hepatic gene expression and the endocrine system of the somatotropic axis and related parameters were compared between the early and late NEB period. Fifty multiparous cows were subjected to 3 periods (1 = early lactation up to 12 wk postpartum, 2 = feed restriction for 3 wk beginning at around 100 days in milk with a feed-restricted and a control group, and 3 = subsequent realimentation period for the feed-restricted group for 8 wk). In period 1, plasma growth hormone reached a maximum in early lactation, whereas insulin-like growth factor-I (IGF-I), leptin, the thyroid hormones, insulin, and the revised quantitative insulin sensitivity check index increased gradually after a nadir in early lactation. Three days after parturition, hepatic mRNA abundance of growth hormone receptor 1A, IGF-I, IGF-I receptor and IGF-binding protein-3 (IGFBP-3) were decreased, whereas mRNA of IGFBP-1 and -2 and insulin receptor were upregulated as compared with wk 3 antepartum. During period 2, feed-restricted cows showed decreased plasma concentrations of IGF-I and leptin compared with those of control cows. The revised quantitative insulin sensitivity check index was lower for feed-restricted cows (period 2) than for control cows. Compared with the NEB in period 1, the changes due to the deliberately induced NEB (period 2) in hormones were less pronounced. At the end of the 3-wk feed restriction, the mRNA abundance of IGF-I, IGFBP-1, -2, -3, and insulin receptor was increased as compared with the control group. The different effects of energy deficiency at the 2 stages in lactation show that the endocrine regulation changes qualitatively and quantitatively during the course of lactation.  相似文献   

19.
Previously we determined that abomasal infusion of l-carnitine increased in vitro hepatic fatty acid oxidation, decreased liver lipid accumulation, and supported higher fat-corrected milk yield in feed-restricted lactating cows. The objectives of this study were to examine the effects of supplemental l-carni-tine and amount of feed intake on free carnitine and carnitine ester concentrations in liver, muscle, milk, and plasma of lactating dairy cows. Eight lactating Holstein cows (132 ± 36 d in milk) were used in a replicated 4 × 4 Latin square design with 14-d periods to test factorial combinations of water or l-carnitine infusion (20 g/d; d 5 to 14) and ad libitum or restricted (50% of previous 5-d intake; d 10 to 14) dry matter intake. Plasma was obtained 3 times daily on d 4, 8, and 12; milk samples were collected on d 8, 9, 13, and 14. Liver and muscle were biopsied on d 14 of each period. Free carnitine, short-chain acylcarnitine, and long-chain acylcarnitine concentrations were determined using a radioenzymatic assay coupled with ion exchange chromatography. Abomasal l-carnitine infusion increased total carnitine in plasma on d 8 and d 12. All liver carnitine fractions were increased by carnitine infusion. Feed restriction elevated concentrations of free carnitine, long-chain acylcarnitine, and total carnitine in liver tissue from carnitine-infused cows but not in those infused with water. In muscle, acid-soluble carnitine, long-chain acylcarnitine, and total carnitine concentrations were increased by carnitine infusion and feed restriction without significant interaction. Feed restriction increased free carnitine concentrations in muscle from water-infused cows but not in carnitine-infused cows. Carnitine infusion increased the concentration of each milk carnitine fraction as well as milk carnitine output on d 8 to 9. On d 13 to 14, all carnitine fractions except short-chain acylcarnitine were increased in milk from water-infused, feed-restricted cows, whereas all fractions were increased in carnitine-infused, feed-restricted cows. Carnitine infusion increased total carnitine in plasma, liver, muscle, and milk during feed restriction, whereas feed restriction alone increased carnitine concentrations in muscle and milk but not in liver. Liver carnitine concentrations might limit hepatic fatty acid oxidation capacity in dairy cows during the periparturient period; therefore, supplemental l-carnitine might decrease liver lipid accumulation in periparturient cows.  相似文献   

20.
Cholesterol and phospholipid concentrations in serum lipoproteins, plasma activities of lecithin:cholesterol acyltransferase (LCAT) and phospholipid transfer protein (PLTP) and lipoprotein lipase (LPL) activity in adipose tissue biopsies were measured ante and post partum in dairy cows given either free or restricted access to feed during the dry period. After parturition, all cows were fed ad libitum. The purpose of this study was to try to understand the earlier observed marked drop post partum in plasma triacylglycerol (TAG) in terms of lipoprotein metabolism in cows developing fatty liver post partum. As would be expected, free access to feed during the dry period induced a rise of hepatic TAG concentrations post partum associated with a decrease in plasma TAG levels. Total and free cholesterol concentrations in the VLDL, IDL, LDL and HDL2 fractions fell immediately after parturition. VLDL and IDL cholesterol concentrations remained at a constant, low level during the entire sampling period post partum, whereas the drop in LDL and HDL2 cholesterol post partum was followed by a rebound rise. Plasma LCAT and PLTP activities decreased by on average 19% and 33%, respectively, after parturition and then rose to values seen before parturition, but there was no effect of feeding regimen during the dry period. Activities of LCAT and PLTP were significantly correlated with cholesterol and phospholipid concentrations in LDL and HDL2. Plasma LCAT activity, as measured with exogenous substrate, and PLTP activity were both positively correlated with HDL3 phospholipid levels. LPL activity in adipose tissue dropped after parturition, the drop being smaller after feeding ad libitum during the dry period. It is concluded that the drop in adipose tissue LPL activity post partum is at variance with the simultaneous fall in plasma TAG. Possibly, the decrease in adipose tissue LPL activity helps to channel fatty acids away from adipose tissue into the udder. The post-partum changes in lipid transfer proteins in the blood are in line with the changes observed in the levels of the lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号