首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellulosic ethanol made from cellulosic biomass is a promising alternative to petroleum-based transportation fuels. Enzymatic hydrolysis is a crucial step in cellulosic ethanol production. In order to better understand the mechanisms of enzymatic hydrolysis, relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield have been studied extensively. However, the literature contains inconsistent reports. This paper presents an analysis of the inconsistent reports on the relationships in the literature. It discusses the differences in the reported experiments from five perspectives (biomass category, particle size definition, sugar yield definition, biomass treatment procedure, and particle size level). It also proposes future research activities that can provide further understanding of the relationships.  相似文献   

2.
Five chip sizes of freshly harvested hybrid poplar, ranging from 0.2 × 0.2 cm to 2.0 × 1.5 cm, plus an equal mixture of all the particles, were used to determine the influence of initial particle size on sugar recovery after steam explosion pretreatment and enzymatic hydrolysis. It was found that there is essentially no effect of particle size or particle size heterogeneity on sugar recovery. Enzymatic digestibility of solids from all the particles showed similar yields ranging from 78 to 82% glucan conversion after 72 h. The overall sugar recovery from all the samples ranged from 87 to 90% and 61–64% for glucose and xylose respectively and was not influenced by particle size. An unsteady heat transfer model was used to assess the intra-particle temperature profile of the wood during pretreatment. It was found that all the wood chips, regardless of size, are essentially isothermal. This supports the experimental result of no significant difference in sugar yields among different particle sizes. Steam pretreatment appears to be a robust method that can accommodate a wide range of particle sizes.  相似文献   

3.
In the study, the production of biohydrogen by extracted fermentation from sugar beet was evaluated. Effects of initial amount of sugar beet, biomass and particle size of sugar beet on biohydrogen formation were investigated. The hydrogen (H2) gas was predicted to be 78.6 mL at initial dry weight of sugar beet 24.6 g L?1 and H2 yield was calculated as 81.9 mLH2 g?1TOC while biomass concentration (1 g L?1) and particle size (0.3 cm) were constant. The peak H2 gas volume was predicted to be 139.9 mL at the low particle size of 0.1 cm. Hydrogen gas production potential was predicted as 143.6 mL h?1. The peak value of 197.9 mLH2 g?1TOC was obtained with particle size of 0.1 cm when dry weight of sugar beet and initial amount of biomass was kept constant at 24.6 g L?1 and 1 g L?1, respectively.  相似文献   

4.
Lignocellulosic biomass can be utilized to produce ethanol, a promising alternative energy source produced through fermentation of sugars. However, in order to achieve high sugar and ethanol yields, the lignocellulosic material must be pretreated before the enzymatic hydrolysis and fermentation. Dilute acid pretreatment, using SO2, is one of the most promising methods of pretreatment for softwood and agricultural residues. However, handling the high acidity of the slurry obtained from pretreatment and difficulty in recycling/degradation of the impregnating agent are some of the drawbacks of the dilute acid processes. In the present study the influence of utilization of a weak organic acid (lactic acid), as impregnating agent, on the sugar yield from pretreatment, with and without addition of SO2, was investigated. The efficiency of pretreatment was assessed by enzymatic hydrolysis of the slurry obtained by pretreatment, using sugarcane bagasse and spruce, stored for one and two months in the presence of lactic acid separately, as feedstocks. Pretreatment of bagasse after storage with 0.5% lactic acid resulted in an overall glucose yield, i.e. after enzymatic hydrolysis, of 79% of theoretical based on the amount available in the raw material. This was as good as pretreatment using SO2 as impregnating agent. However, storage of spruce with lactic acid before pretreatment, with and without addition of SO2, was not efficient and resulted in lower sugar yields than pretreatment using SO2 only.  相似文献   

5.
Steam gasification is considered one of the most effective and efficient techniques of generating hydrogen from biomass. Of all the thermochemical processes, steam gasification offers the highest stoichiometric yield of hydrogen. There are several factors which influence the yield of hydrogen in steam gasification. Some of the prominent factors are: biomass type, biomass feed particle size, reaction temperature, steam to biomass ratio, addition of catalyst, sorbent to biomass ratio. This review article focuses on the hydrogen production from biomass via steam gasification and the influence of process parameters on hydrogen yield.  相似文献   

6.
Sugarcane bagasse represents one of the best potential feedstocks for the production of second generation bioethanol. The most efficient method to produce fermentable sugars is by enzymatic hydrolysis, assisted by thermochemical pretreatments. Previous research was focused on conventional heating pretreatment and the pretreated biomass residue characteristics. In this work, microwave energy is applied to facilitate sodium hydroxide (NaOH) and sulphuric acid (H2SO4) pretreatments on sugarcane bagasse and the efficiency of sugar production was evaluated on the soluble sugars released during pretreatment. The results show that microwave assisted pretreatment was more efficient than conventional heating pretreatment and it gave rise to 4 times higher reducing sugar release by using 5.7 times less pretreatment time. It is highlighted that enrichment of xylose and glucose can be tuned by changing pretreatment media (NaOH/H2SO4) and holding time. SEM study shows significant delignification effect of NaOH pretreatment, suggesting a possible improved enzymatic hydrolysis process. However, severe acid conditions should be avoided (long holding time or high acid concentration) under microwave heating conditions. It led to biomass carbonization, reducing sugar production and forming ‘humins’. Overall, in comparison with conventional pretreatment, microwave assisted pretreatment removed significant amount of hemicellulose and lignin and led to high amount of sugar production during pretreatment process, suggesting microwave heating pretreatment is an effective and efficient pretreatment method.  相似文献   

7.
Pyrolysis is one of the potential routes to harness energy and useful chemicals from biomass. The major objective of biomass pyrolysis is to produce liquid fuel, which is easier to transport, store and can be an alternative to energy source. The yield and composition of pyrolysis oil depend upon biomass feedstock and operating parameters. It is often necessary to explore about the effect of variables on response yield and instinct about their optimization. This study reviews operating variables from existing literature on biomass pyrolysis. The major operating variables include final pyrolysis temperature, inert gas sweeping, residence times, rate of biomass heating, mineral matter, size of biomass particle and moisture contents of biomass. The scope of this paper is to review the influence of operating parameters on production of pyrolysis oil.  相似文献   

8.
A hydrothermal–chemical process for the simultaneous biomass hydrolysis and bio-hydrogen formation was proposed in this study. Current results revealed that a maximum reducing sugar concentration of 26.01 g/L and the yield of bio-hydrogen of 0.9098 mmol/g-cellulose were attained with the designated experimental parameters. Consequently, this study provided a potential route to produce bio-hydrogen and reducing sugar simultaneously in a one-step reaction process by using the energy crops or the agriculture wastes as the substrate.  相似文献   

9.
Kapok fibre is a promising raw material to produce sugar by enzymatic hydrolysis. In this work, effects of water, acid and alkaline pretreatments on the enzymatic sugar yield were studied through response surface methodology (RSM) and supported by the analysis of chemical compositions and physical structure of the fibre. For water pretreatment, reaction temperature and time were the independent variables while chemical concentration was also used as the third independent variable for acid and alkaline pretreatments. For all pretreatments, the enzymatic hydrolysis conditions were kept constant. The structure of pretreated fibre was also examined using scanning electron microscope (SEM). Results showed that water and acid pretreatments effectively dissolved hemicellulose of the fibre with the latter unveiled better results. The alkaline pretreatment resulted in the highest total glucose yield (g/kg of untreated fibre) as compared to water and acid pretreatments. SEM analysis illustrated that water and acid pretreatments led severe destruction of fibre structure; however, both of these pretreatments exhibited lower enhancement of enzymatic hydrolysability of kapok fibre as compared to that observed in alkaline pretreatment.  相似文献   

10.
Converting biomass to fermentable sugar is the critical step in the biomass refinery. Moreover, pretreatment of biomass plays an important role in improving the conversion of biomass to sugar. In this study, sugarcane bagasse was pretreated by metal chloride Lewis acids (0.1 mol L−3 CrCl3, FeCl3, FeCl2, ZnCl2 and AlCl3 solution) for cellulase hydrolysis. The effects of pretreatments on the yield, chemical components, and sequential cellulase hydrolysis of pretreated bagasse were investigated. The results indicated that metal chlorides with different pKa values could efficiently remove the hemicellulose in bagasse during pretreatment. Furthermore, an inhibition factor (IF) quantitatively reflecting difficulty of cellulase hydrolysis was proposed. The low IF means the facile cellulase hydrolysis. The IF of Fe (III)-pretreated bagasse could decrease to 1.35. In this case, the enzymatic digestibility of bagasse approached to 100%.  相似文献   

11.
It is shown that enzymatic hydrolysis of biomass can decisively contribute to supplement indigenous sources of fuels and chemicals. The utilization of hemicellulose and cellulose requires preliminary pretreatment of biomass which can be efficiently accomplished and references are given for the optimization of recovery procedures. Bioconversion of both hemicellulose and cellulose is discussed and the effects of temperature, pH, substrate concentration and product inhibition are shown on the basis of experimental evidence. Process by-products-low molecular weight chemicals formed during biomass pretreatment - were fully characterized and details are reported of the analytical methods which were employed. It was found that higher sugar yields are reached when hydrolysis is performed making use of enzymic composites from different strains.  相似文献   

12.
Cellulosic ethanol produced from cellulosic biomass is an alternative to petroleum-based transportation fuels. Raw cellulosic biomass has low density, causing high costs in their storage, transportation, and handling. Ultrasonic vibration-assisted (UV-A) pelleting can increase the density of cellulosic biomass. Effects of UV-A pelleting variables on pellet quality (density, durability, stability, and strength) and sugar yield have been reported. However, power consumption in UV-A pelleting has not been fully investigated. This paper presents an experimental investigation on power consumption in UV-A pelleting of wheat straw. Effects of input variables (biomass moisture content, biomass particle size, pelleting pressure, and ultrasonic power) on power consumption are investigated. Results show that power consumption in UV-A pelleting increases as moisture content and particle size decrease, and as pelleting pressure and ultrasonic power increase.  相似文献   

13.
酶水解作为发酵法生产燃料乙醇的关键步骤之一,其高效的转化过程对后续糖发酵至关重要,酶水解动力学研究可为高效转化机理的研究提供理论支持。但纤维素酶水解是一个复杂的多相异质反应过程,很难用简单的动力学模型进行表征。由于酶分子表面具有分形特性,其与分形动力学具有局部相似性,因此,分形理论可为木质纤维素酶水解的复杂动力学研究提供理论基础。从纤维乙醇生产工艺出发,在分析木质纤维素酶水解机理及影响酶解效率主要因素的基础上,总结了国内外分形动力学目前用于木质纤维素类生物质酶水解过程的主要动力学模型研究进展,并对其发展趋势和应用前景进行了展望。  相似文献   

14.
The use of several lignocellulosic materials for ethanol fuel production has been studied exhaustively in the U.S.A.. Strong environmental legislation has been driving efforts by enterprises, state agencies, and universities to make ethanol from biomass economically viable. Production costs for ethanol from biomass have been decreasing year by year as a consequence of this massive effort. Pretreatment, enzyme recovery, and development of efficient microorganisms are some promising areas of study for reducing process costs.Sugar cane bagasse constitutes the most important lignocellulosic material to be considered in Brazil as new technology such as the production of ethanol fuel. At present, most bagasse is burned, and because of its moisture content, has a low value fuel. Ethanol production would result in a value-added product. The bagasse is available at the sugar mill site at no additional cost because harvesting, transportation and storage costs are borne by the sugar production.The present paper presents an alternative pretreatment with low energy input where biomass is treated in a silo type system without need for expensive capitalization. Experimentally, ground sugar cane bagasse is placed in plastic bags and a peracetic acid solution is added to the biomass at concentrations of 0, 6, 9, 15, 21, 30, and 60% w/w of peracetic acid based on oven dried biomass. The ratio of solution to wood is 6:1; a seven day storage period had been used. Tests using hydrolyzing enzymes as an indicator for SSCF have been performed to evaluate the pretreatment efficiency.As an auxiliary method, a series of pre-pretreatments using stoichiometric amounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetate content in the sugar cane bagasse have been performed before addition of peracetic acid. The alkaline solutions are added to the raw bagasse in a ratio of 17:1 solution to biomass and mixed for 24 hours at room temperature. Biomass is filtered and washed to a neutral pH before the peracetic acid addition.According to enzymatic hydrolysis results, peracetic acid is a powerful chemical for improving enzymatic digestibility in sugar cane bagasse with no need for using high temperatures. Basic pre-pretreatments are helpful in reducing peracetic acid requirements in the pretreatment.  相似文献   

15.
In this study, physical method reinforced chemical pretreatments of Triarrhena lutarioriparia (TL) were compared to explore the higher reducing sugar yield in subsequent enzymatic hydrolysis. Four different pretreatments, namely hydrothermal pretreatment (HTP), dilute acid pretreatment (HCl-P), ultrasound assisted acid pretreatment (HCl + U) and microwave assisted acid pretreatment (HCl + M) were conducted on TL. The structural features of TL after different pretreatments were investigated by Scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Fourier transformed infrared (FT-IR) techniques. The fractal-like theory was introduced to study the enzymatic hydrolysis kinetics of TL. Results showed that the reducing sugar yield of HCl-P reached 100.14 mg/g, showing 1.34 times higher than that of the raw. Due to the hemicellulose and lignin removal and lignocellulosic structure destruction, ultrasound and microwave irradiation strengthened the HCl-P, leading to a great enhancement of enzymatic hydrolysis of TL, especially the microwave irradiation. Moreover, the fractal-like theory was confirmed to be satisfactory for studying the enzymatic hydrolysis kinetics of lignocellulosic biomass.  相似文献   

16.
Sugar cane bagasse was submitted to ethanol organosolv pre-treatment using a 50 L pilot scale reactor. The influence of catalyst type (H2SO4 or NaOH), catalyst concentration (1.25–1.50% w/w on dry fiber) and process time (60–90 min) on total solid recovery and solid composition (glucan, xylan and lignin contents) was evaluated by performing a 23 full factorial experimental design. Pretreated sugar cane bagasse was further submitted to enzymatic hydrolysis using a commercial enzyme complex formed by cellulases and β-glucosidases. Glucose concentration in the hydrolysates and glucose yield referred to initial raw material (g glucose/100 g sugar cane bagasse) were used to select the best operational conditions. Concerning the enzymatic hydrolysis, the resulting glucose concentration was found to be dependent on xylan contents of the pretreated material. The modelling equations for glucose concentration and glucose yield as a function of the pre-treatment variables and the statistical analysis are also discussed in this work.  相似文献   

17.
Pretreatment methods for the production of fermentable substrates from Miscanthus, a lignocellulosic biomass, were investigated. Results demonstrated an inverse relationship between lignin content and the efficiency of enzymatic hydrolysis of polysaccharides. High delignification values were obtained by the combination of mechanical, i.e. extrusion or milling, and chemical pretreatment (sodium hydroxide). An optimized process consisted of a one-step extrusion-NaOH pretreatment at moderate temperature (70°C). A mass balance of this process in combination with enzymatic hydrolysis showed the following: pretreatment resulted in 77% delignification, a cellulose yield of more than 95% and 44% hydrolysis of hemicellulose. After enzymatic hydrolysis 69% and 38% of the initial cellulose and hemicellulose fraction, respectively, was converted into glucose, xylose and arabinose. Of the initial biomass, 33% was converted into monosaccharides. Normal growth of Thermotoga elfii on hydrolysate was observed and high amounts of hydrogen were produced.  相似文献   

18.
The relationship between fiber dislocations and fiber cutting during the enzymatic hydrolysis of lignin-free fibers was investigated. Dislocations are morphological changes in the microfibril direction of cellulose. It was hypothesized that enzymatic activity is concentrated at dislocation sites, resulting in fiber cutting. Bleached softwood kraft pulp was analyzed during enzymatic hydrolysis (Novozynme 188 and Celluclast 1.5L) to confirm fiber cutting and explore its relationship with dislocation sites via microscopy, fiber length, and sugar determination. Results reveal that fibers were quickly cut through during enzymatic hydrolysis, resulting in shorter fiber fragments during the initial 60% of hydrolysis. Polarized light microscopy images show a relationship between dislocations and fiber cutting during enzymatic hydrolysis. Images show fibers partially cut at dislocation sites, and that there are no dislocations on cut fibers after 6 h hydrolysis. PLM and FQA data revealed that there were about seven major dislocations per fiber and each fiber was cut through about 6, and 10 times after 4 and 6 h of enzymatic hydrolysis, respectively. In combination, this data strongly implicates dislocation sites as the location of fiber cutting.  相似文献   

19.
In this work we evaluated ethanol production from enzymatic hydrolysis of sugarcane bagasse. Two pretreatments agents, lime and alkaline hydrogen peroxide, were compared in their performance to improve the susceptibility of bagasse to enzymatic action. Mild conditions of temperature, pressure and absence of acids were chosen to diminish costs and to avoid sugars degradation and consequent inhibitors formation. The bagasse was used as it comes from the sugar/ethanol industries, without grinding or sieving, and hydrolysis was performed with low enzymes loading (3.50 FPU g−1 dry pretreated biomass of cellulase and 1.00 CBU g−1 dry pretreated biomass of ??-glucosidase). The pretreatment with alkaline hydrogen peroxide led to the higher glucose yield: 691 mg g−1 of glucose for pretreated bagasse after hydrolysis of bagasse pretreated for 1 h at 25 °C with 7.35% (v/v) of peroxide. Fermentation of the hydrolyzates from the two pretreatments were carried out and compared with fermentation of a glucose solution. Ethanol yields from the hydrolyzates were similar to that obtained by fermentation of the glucose solution. Although the preliminary results obtained in this work are promising for both pretreatments considered, reflecting their potential for application, further studies, considering higher biomass concentrations and economic aspects should be performed before extending the conclusions to an industrial process.  相似文献   

20.
以自合成的木质素磺酸钠基固体酸(Sl-C-S-H2O2)为催化剂,并耦合纤维素酶实现玉米芯的两步水解建立糖平台。考察预处理条件对木糖收率的影响,最高木糖收率可达83.4%;在国产纤维素酶的作用下,48 h葡萄糖收率即可达92.6%,两步反应的总还原糖收率达88.1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号