首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A constructive solution to the path-following problem for MIMO linear systems with unstable zero dynamics is developed. While the original control variable steers the system output along the path, the path parameter θ is used as an additional control to stabilize zero dynamics with a feedback law which is nonlinear due to the path constraint. A sufficient condition for solvability of the path-following problem is given in terms of the geometric properties of the path. When this condition is satisfied, an arbitrary small L2 norm of path-following error can be achieved, thus avoiding performance limitations of the standard reference tracking problem imposed by unstable zero dynamics.  相似文献   

2.
Vector Field Path Following for Miniature Air Vehicles   总被引:4,自引:0,他引:4  
In this paper, a method for accurate path following for miniature air vehicles is developed. The method is based on the notion of vector fields, which are used to generate desired course inputs to inner-loop attitude control laws. Vector-field path-following control laws are developed for straight-line paths and circular arcs and orbits. Lyapunov stability arguments are used to demonstrate asymptotic decay of path-following errors in the presence of constant wind disturbances. Experimental flight tests have demonstrated mean path-following errors on less than one wingspan for straight-line and orbit paths and less than three wingspans for paths with frequent changes in direction.  相似文献   

3.
It is a common conviction that forward motion control of tractor-trailer vehicles is a substantially simpler problem relative to reversing with trailers. This opinion may be misleading when considering the N-trailer vehicles moving forward with positive hitching offsets when a guidance point is located on a trailer. Due to the non-minimum-phase nature of vehicle kinematics, closing a feedback from a trailer posture can lead to the jackknife effect in this case. So far, there has been no solution to this problem for the N-trailers admitting trajectories of a varying curvature. To fill this gap, we propose a scalable and modular control strategy applicable to the N-trailer vehicles equipped solely with off-axle interconnections. The concept relies on a transformation of the control problem posed for the non-minimum-phase kinematics into a corresponding problem formulated for a virtual vehicle of minimum-phase kinematics, which can be solved by using the recently proposed cascade-like controller.  相似文献   

4.
This paper mainly studies nonlinear feedback control applied to the nonlinear vehicle dynamics with varying velocity. The main objective of this study is the stabilisation of longitudinal, lateral and yaw angular vehicle velocities. To this end, a nonlinear vehicle model is developed which takes both the lateral and longitudinal vehicle dynamics into account. Based on this model, a method to build a nonlinear state feedback control is first designed by which the complexity of system structure can be simplified. The obtained system is then synthesised by the combined Lyapunov–LaSalle method. The simulation results show that the proposed control can improve stability and comfort of vehicle driving. Moreover, this paper presents a lemma which ensures the trajectory tracking and path-following problem for vehicle. It can also be exploited simultaneously to solve both the tracking and path-following control problems of the vehicle ride and driving stability. We also show how the results of the lemma can be applied to solve the path-following problem, in which the vehicle converges and follows a designed path. The effectiveness of the proposed lemma for trajectory tracking is clearly demonstrated by simulation results.  相似文献   

5.
This paper presents an adaptive Nonlinear Model Predictive Control (NMPC) for the path-following control of a fixed-wing unmanned aerial vehicle (UAV). The objective is to minimize the mean and maximum errors between the reference path and the UAV. Navigating in a cluttered environment requires accurate tracking. However, linear controllers cannot provide good tracking performance due to nonlinearities that arise in the system dynamics and physical limitations such as actuator saturation and state constraints. NMPC provides an alternative since it can combine multiple objectives and constraints, which minimize the objective function. However, it is difficult to decide appropriate control horizon since the path-following performance depends on the profile of the path. Therefore, a fixed-horizon NMPC cannot guarantee accurate tracking performance. An adaptive NMPC that varies the control horizon according to the path curvature profile for tight tracking is proposed in this paper. Simulation results show that the proposed adaptive NMPC controller can follow the path more accurately than a conventional, fixed-horizon NMPC.  相似文献   

6.
基于滤波反步法的欠驱动AUV三维路径跟踪控制   总被引:5,自引:0,他引:5  
研究了欠驱动自主水下航行器 (Autonomous underwater vehicle, AUV)的三维空间路径跟踪控制问题.针对基于虚拟向导建立的三维路径跟踪误差模型, 采用滤波反步法设计跟踪控制器,通过二阶滤波过程获得虚拟控制量的导数, 避免了直接对虚拟控制量解析求导的复杂过程, 同时滤除了高频测量噪声, 增加了系统对噪声的鲁棒性.通过设计滤波误差补偿回路, 保证了滤波信号对虚拟控制量的逼近精度.基于李雅普诺夫稳定性理论设计鲁棒项, 保证了闭环跟踪误差系统状态的渐近稳定.仿真结果表明了该控制器对噪声干扰具有一定的鲁棒性, 能够实现对三维路径的精确跟踪.  相似文献   

7.
基于模糊混合控制的自治水下机器人路径跟踪控制   总被引:1,自引:1,他引:0  
基于模糊混合控制策略,本文提出了一种用于非线性欠驱动自治水下机器人的鲁棒路径跟踪控制方法.利用Sugeno型模糊推理系统,将PD滑模控制器与非奇异终端滑模控制器光滑连接,构造了模糊混合控制器.它能充分融合这两类控制器的优势,无论系统远离平衡点还是在其附近,都能取得快速收敛的效果.如果,借助于非时间参考量,将该混合控制器用于自治水下机器人路径跟踪控制,将有利于提高它在不确定环境中的跟踪能力.最后,通过仿真计算结果验证了该控制策略的有效性.  相似文献   

8.
Passivity-based designs for synchronized path-following   总被引:1,自引:0,他引:1  
We consider a formation control system where individual systems are controlled by a path-following design and the path variables are to be synchronized. We first show a passivity property for the path-following system, and next, combine this with a passivity-based synchronization algorithm developed in Arcak [2007. Passivity as a design tool for group coordination. IEEE Transactions on Automatic Control, in press]. The passivity approach expands the classes of synchronization schemes available to the designer. This generality offers the possibility to optimize controllers to, e.g., improve robustness and performance. Two designs are developed in the proposed passivity framework: the first employs the path error information in the synchronization loop, while the second only uses synchronization errors. A sampled-data design, where the path variables are updated in discrete-time and the path-following controllers are updated in continuous time, is also developed.  相似文献   

9.
This paper presents a low-cost localization system to guide an Unmanned Aerial Vehicle (UAV) in indoor flights, considering an environment with invariant texture and typical indoor illumination. The first contribution of the paper is the proposal of a system to estimate the position and orientation of the UAV, through a multi-sensor fusion scheme, dealing with data provided by a RGB-D sensor, an inertial measurement unit (IMU), an ultrasonic sensor and optical flow-based velocity estimates. A second contribution of the paper is the proposal of a high-level control system to guide the UAV in path-following tasks, involving two controllers: a kinematic one, responsible for generating reference velocities for the vehicle, and a PD one, responsible for tracking such reference velocities, thus characterizing a cascade controller. Experiments with such a localization and control systems, during which abrupt disturbances are applied, were carried out to check the effectiveness of the developed capture and control systems, whose results validate the proposed framework.  相似文献   

10.
Maneuvers performed with tractor-trailers vehicles (N-trailers) belong to the most demanding motion control tasks in the transportation practice. Very frequent maneuvers concern the lining-up process of a vehicle chain, usually as a preliminary stage which prepares the system to subsequent parking/docking maneuvers. The most common lining-up control approach results from utilization of the open-loop asymptotic stability of N-trailer joint-angle dynamics in the forward motion. However, in case of long trailers this approach appears very inefficient especially if the available motion space is substantially limited. By using the triangular forms of joint-angle dynamics the problem of lining-up control for N-trailers is analyzed in the paper by considering two alternative strategies: active lining-up (feedback control) and passive lining-up (open-loop control). The two strategies are compared in the context of their practical effectiveness, and how the effectiveness depends on kinematic parameters of the trailers and their interconnections. It is revealed why the active strategy can be much more efficient in most practical cases. Theoretical considerations are validated by results of numerical simulations and experiments conducted with a laboratory-scale three-trailer robotic vehicle.  相似文献   

11.
This paper describes the theoretical development and experimental implementation of a complete navigation procedure for use in an autonomous mobile robot for structured environments. Estimates of the vehicle's position and orientation are based on the rapid observation of visual cues located at discrete positions within the environment. The extended Kalman filter is used to combine these visual observations with sensed wheel rotations to produce optimal estimates continuously. The complete estimation procedure, as well as the control algorithm, developed are time independent. A naturally suitable quantity involving wheel rotations is used as the independent variable. One consequence of this choice is that the vehicle speed can be specified independently of the estimation and control algorithms. Reference paths are “taught” by manually leading the vehicle through the desired path. Estimates produced by the extended Kalman filter during this teaching session are then used to represent the geometry of the path. The tracking of taught reference paths is accomplished by controlling the position and orientation of the vehicle relative to the reference path. Time-independence path tracking has necessitated the development of a novel, geometry-based means for advancing along the reference path  相似文献   

12.
非完整移动机器人全局路径跟踪控制   总被引:1,自引:0,他引:1  
根据制导路径跟踪理论,提出了一种非完整移动机器人全局路径跟踪控制方法.这一方法首先在路径坐标系上计算实际位置与期望位置的误差,利用制导的路径跟踪理论,导出消除该误差所需的姿态角和路径参数更新律,然后据此求解角速度及实际控制.文中还给出了初始路径参考点的计算方法,分析了路径跟踪方向和反转方法.稳定性分析证明该方法没有控制奇异点,受控闭环系统全局一致渐近稳定.最后通过移动机器人典型路径跟踪实验验证了所提出方法的可行性.  相似文献   

13.
We address the problem of position trajectory-tracking and path-following control design for underactuated autonomous vehicles in the presence of possibly large modeling parametric uncertainty. For a general class of vehicles moving in either 2- or 3-D space, we demonstrate how adaptive switching supervisory control can be combined with a nonlinear Lyapunov-based tracking control law to solve the problem of global boundedness and convergence of the position tracking error to a neighborhood of the origin that can be made arbitrarily small. The desired trajectory does not need to be of a particular type (e.g., trimming trajectories) and can be any sufficiently smooth bounded curve parameterized by time. We also show how these results can be applied to solve the path-following problem, in which the vehicle is required to converge to and follow a path, without a specific temporal specification. We illustrate our design procedures through two vehicle control applications: a hovercraft (moving on a planar surface) and an underwater vehicle (moving in 3-D space). Simulations results are presented and discussed.  相似文献   

14.
This paper addresses the cooperative path-following problem of multiple marine surface vehicles subject to dynamical uncertainties and ocean disturbances induced by unknown wind, wave and ocean current. The control design falls neatly into two parts. One is to steer individual marine surface vehicle to track a predefined path and the other is to synchronise the along-path speed and path variables under the constraints of an underlying communication network. Within these two formulations, a robust adaptive path-following controller is first designed for individual vehicles based on backstepping and neural network techniques. Then, a decentralised synchronisation control law is derived by means of consensus on along-path speed and path variables based on graph theory. The distinct feature of this design lies in that synchronised path following can be reached for any undirected connected communication graphs without accurate knowledge of the model. This result is further extended to the output feedback case, where an observer-based cooperative path-following controller is developed without measuring the velocity of each vehicle. For both designs, rigorous theoretical analysis demonstrate that all signals in the closed-loop system are semi-global uniformly ultimately bounded. Simulation results validate the performance and robustness improvement of the proposed strategy.  相似文献   

15.
多智能体沿多条给定路径编队运动的有向协同控制   总被引:3,自引:1,他引:2  
陈杨杨  田玉平 《自动化学报》2009,35(12):1541-1549
研究了在有向通信连接下二阶积分器描述的多智能体沿多条给定路径编队运动的控制器设计及其稳定性分析问题. 智能体的动态和指定路径都是在固定直角坐标系下描述的. 通过引入路径函数来设计路径跟踪控制, 根据路径函数与弧长的关系来设计编队控制律, 使得多智能体沿期望路径的位置和速度在规定队形下达到一致. 利用图论证明, 当通信拓扑对应的有向图具有全局可达点时, 设计的编队控制系统是渐近稳定的. 本文设计的有向协同控制律可以应用于区域的信息优化采集.  相似文献   

16.
17.
18.
19.
Robust roll motion control of a vehicle using integrated control strategy   总被引:1,自引:0,他引:1  
This paper presents an electrically actuated roll motion control of a vehicle using simulation and experimental analysis. The controller is designed with an H control scheme based on the 3 DOF vehicle model considering parameter variations, which affect the roll dynamics. To investigate the feasibility of the active roll control system, its performance is evaluated by simulation in a full vehicle model under various conditions. The Hil setup with the electrically actuated roll control system was devised and its performance was investigated through experimental works. Finally, to enhance the performance in a transient region, an integrated control strategy is presented.  相似文献   

20.
This paper presents a new efficient and robust tool-path generation method that employs a curve-based approach for clean-up machining. The clean-up machining discussed in this paper is pencil-cut and fillet-cut for a polyhedral model of the STL form with a ball-end mill. The pencil-cut and fillet-cut paths are obtained from the curve-based scanning tool paths on the xz, yz, and xy planes. The scanning tool path has exact sharp-concave points and bi-contact vectors, both of which are very useful to detect ‘pencil-points’, to trace the pencil-cut path, and to generate the fillet-cut path. In the paper, some illustrative examples are provided, and the characteristics of the proposed method are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号