首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Combined‐cycle power plants are currently preferred for new power generation plants worldwide. The performance of gas‐turbine engines can be enhanced at constant turbine inlet temperatures with the addition of a bottoming waste‐heat recovery cycle. This paper presents a study on the energy and exergy analysis of a novel hybrid Combined‐Nuclear Power Plant (HCNPP). It is thus interesting to evaluate the possibility of integrating the gas turbine with nuclear power plant of such a system, utilizing virtually free heat. The integration arrangement of the AP600 NPP steam cycle with gas turbines from basic thermodynamic considerations will be described. The AP600 steam cycle modifications to combine with the gas turbines can be applied to other types of NPP. A simple modeling of Alstom gas turbines cycle, one of the major combined‐cycle steam turbines manufacturers, hybridized with a nuclear power plant from energetic and exergetic viewpoint is provided. The Heat Recovery Steam Generator (HRSG) has single steam pressure without reheat, one superheater and one economizer. The thermodynamic parameters of the working fluids of both the gas and the steam turbines cycles are analyzed by modeling the thermodynamic cycle using the Engineering Equation Solver (EES) software. In case of hybridizing, the existing Alstom gas turbine with a pressurized water nuclear power plants using the newly proposed novel solution, we can increase the electricity output and efficiency significantly. If we convert a traditional combined cycle to HCNPP unit, we can achieve about 20% increase in electricity output. This figure emphasizes the significance of restructuring our power plant technology and exploring a wider variety of HCNPP solutions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Solar heat at moderate temperatures around 200 °C can be utilized for augmentation of conventional steam-injection gas turbine power plants. Solar concentrating collectors for such an application can be simpler and less expensive than collectors used for current solar power plants. We perform a thermodynamic analysis of this hybrid cycle. High levels of steam-to-air ratio are investigated, leading to high power augmentation compared to the simple cycle and to conventional STIG. The Solar Fraction can reach up to 50% at the highest augmentation levels. The overall conversion efficiency from heat to electricity (average over fuel and solar contributions) can be in the range of 40–55% for typical candidate turbines. The incremental efficiency (corresponding to the added steam beyond conventional STIG) is in the range of 22–37%, corresponding to solar-to-electricity efficiency of about 15–24%, similar to and even exceeding current solar power plants using higher temperature collectors. The injected water can be recovered and recycled leading to very low water consumption of the cycle, but a very low cost condenser is required to make water recovery feasible.  相似文献   

3.
In the current study, a solar tower–based energy system integrated with a thermal energy storage option is offered to supply both the electricity and freshwater through distillation and reverse osmosis technologies. A high‐temperature thermal energy storage subsystem using molten salt is considered for the effective and efficient operation of the integrated system. The molten salt is heated up to 565°C through passing the solar tower. The thermal energy storage tanks are designed to store heat up to 12 hours. The temperature variations in the storage tanks are studied and compared accordingly for evaluation. The effect of operating temperatures on the freshwater production and overall system efficiency is determined. About 24.46 MW electricity is generated in the steam turbine under sunny conditions. Furthermore, the storage subsystem stores heat during sunny hours to utilize later in cloudy hours and night time. The produced power decreases to 20.17 MW in discharging hours due to temperature decrease in the tank. The electricity generated by the system is then used to produce freshwater through the reverse osmosis units and also to supply electricity for the residential use. A total flowrate of 240.02 kg/s freshwater is obtained by distillation and reverse osmosis subsystems.  相似文献   

4.
Solar gas turbine systems: Design, cost and perspectives   总被引:2,自引:0,他引:2  
The combination of high solar shares with high conversion efficiencies is one of the major advantages of solar gas turbine systems compared to other solar-fossil hybrid power plants. Pressurized air receivers are used in solar tower plants to heat the compressed air in the gas turbine to temperatures up to 1000 °C. Therefore solar shares in the design case of 40% up to 90% can be realized and annual solar shares up to 30% can be achieved in base load. Using modern gas turbine systems in recuperation or combined cycle mode leads to conversion efficiencies of the solar heat from around 40% up to more than 50%. This is an important step towards cost reduction of solar thermal power. Together with the advantages of hybrid power plants—variable solar share, fully dispatchable power, 24 h operation without storage—solar gas turbine systems are expected to have a high potential for market introduction in the mid term view.In this paper the design and performance assessment of several prototype plants in the power levels of 1 MW, 5 MW and 15 MW are presented. Advanced software tools are used for design optimization and performance prediction of the solar tower gas turbine power plants. Detailed cost assumptions for the solarized gas turbine, the solar tower plant and further equipment as well as for operation and maintenance are presented. Intensive performance and economic analysis of the prototype plants for different locations and capacity factors are shown. The cost reduction potential through automation and remote operation is revealed.  相似文献   

5.
A new integrated combined cooling, heating and power system which includes a solid oxide fuel cell, Stirling engine, steam turbine, linear Fresnel solar field and double effect absorption chiller is introduced and investigated from energy, exergy and thermodynamic viewpoints. In this process, produced electrical power by the fuel cell and steam turbines is 6971.8 kW. Stirling engine uses fuel cell waste heat and produces 656 kW power. In addition, absorption chiller is driven by waste heat of the Stirling engine and generates 2118.8 kW of cooling load. Linear Fresnel solar field produces 961.7 kW of thermal power as a heat exchanger. The results indicate that, electrical, energy and exergy efficiencies and total exergy destruction of the proposed system are 49.7%, 67.5%, 55.6% and 12560 kW, respectively. Finally, sensitivity analysis to investigate effect of the different parameters such as flow rate of inputs, outlet pressure of the components and temperature changes of the solar system on the hybrid system performance is also done.  相似文献   

6.
The solid oxide electrolysis cells (SOEC) technology is a promising solution for hydrogen production with the highest electrolysis efficiency. Compared with its counterparts, operating at high temperature means that SOEC requires both power and heat. To investigate the possibility of coupling external waste heat with the SOEC system, and the temperature & quantity requirement for the external waste heat, a universal SOEC system operating at atmospheric pressure is proposed, modeled and analyzed, without specific waste heat source assumption such as solar, geothermal or industrial waste heat. The SOEC system flow sheet is designed to create opportunity for external waste heat coupling. The results show that external waste heat is required for feed stock heating, while the recommended coupling location is the water evaporator. The temperature of the external waste heat should be above 130 °C. For an SOEC system with 1 MW electrolysis power input, the required external waste heat is about 200 kW. When the stack operates at thermoneutral state and 800 °C, the specific energy consumption is 3.77 kWh/Nm3-H2, of which electric power accounts for 84% (3.16 kWh/Nm3-H2) and external waste heat accounts for 16% (0.61 kWh/Nm3-H2). The total specific energy consumption remains almost unchanged when operating the SOEC stack around the thermoneutral condition.  相似文献   

7.
This article proposed a hybrid power system combining mid-temperature solar heat and a coal-fired power plant for CO2 capture. In this system, solar heat at around 300 °C replaces the high-quality steam extractions of the Rankine cycle to heat the feed water, so the steam that was to be extracted can expand efficiently in the high-pressure turbines. In this hybrid system, the CO2 capture penalty is completely compensated for by the enhanced work output contributed by the solar heat. The annual solar field cost is reduced to 10.8 $/ton-CO2, compared to 25.8 $/ton-CO2 in a system with solar heat for direct solvent regeneration. Additionally, the mid-temperature solar heat is converted into work with an improved efficiency of 27%. Thus, this system offers a promising approach to reduce the CO2 capture penalty in CCS with attractive cost-effective utilization of mid-temperature solar heat.  相似文献   

8.
A simulation study of hybrid solar-geothermal heat pump system for residential applications using carbon dioxide was carried out under different operating conditions. The system consists of a solar unit (concentric evacuated tube solar collector and heat storage tank) and a CO2 heat pump unit (three double-pipe heat exchangers, electric expansion valve, and compressor). As a result, the differential of pressure ratio between the inlet and the outlet of the compressor increases by 19.9%, and the compressor work increases from 4.5 to 5.3 kW when the operating temperature of the heat pump rises from 40 °C to 48 °C. Besides, the pressure ratio of the compressor decreases from 3 to 2.5 when the ground temperature increases from 11 °C to 19 °C. The operating time of the heat pump is reduced by 5 h as the daily solar radiation increases. As the solar radiation increases from 1 to 20 MJ/m2, the collector heat rises by 48% and the maximum collector heat becomes 47.8 kWh. The heating load increases by 70% as the indoor design temperature increases from 18 °C to 26 °C. However, the solar fraction is reduced from 11.4% to 5.8% because of the increases of the heating load.  相似文献   

9.
S. B. Riffat  X. Zhao 《Renewable Energy》2004,29(12):1965-1990
A theoretical analysis has been carried out to investigate the thermodynamic and heat transfer characteristics of a hybrid heat pipe solar collector/CHP system based on the assumption that the system operates on a typical Rankine cycle. Experimental testing of the prototype was also carried out using two types of turbine units. The variation of refrigerant pressures and temperatures, hot water temperatures in the collector and boiler systems, as well as chill water temperatures were recorded. The results were used to estimate the heat from the boiler and the solar collectors, the electricity and hot water generation (indicated as kW energy) from the CHP operation and the gas consumption of the system. The modelling and experimental results were compared for the impulse-reaction turbine system, and a simple analysis of the energy and environmental benefits of the system was carried out. The analysis indicated that the proposed system would save primary energy of approximately 3150 kWh per annum compared to the conventional electricity and heating supply systems, and this would result in reduction in CO2 emission of up to 600 tonnes per annum. The running cost of the proposed system would also be lower than conventional heating/power systems.  相似文献   

10.
Hydrogen is an essential component of power-to-gas technologies that are needed for a complete transition to renewable energy systems. Although hydrogen has zero GHG emissions at the end-use point, its production could become an issue if non-renewable, and pollutant energy and material resources are used in this step. Therefore, a crucial step for the fully developed hydrogen economy is to find alternative hydrogen production methods that are clean, efficient, affordable, and reliable. With this motivation, in this study, an integrated and continuous type of hydrogen production system is designed, developed, and investigated. This system has three components. There is a solar spectral splitting device (Unit I), which splits the incoming solar energy into two parts. Photons with longer wavelength is sent to the photovoltaic thermal hybrid solar collector, PV/T, (Unit II) and used for combined heat and power generation. Then the remaining part is transferred to the novel hybrid photoelectrochemical-chloralkali reactor (Unit III) for simultaneous H2, Cl2, and NaOH production. This system has only one energy input, which is the solar irradiation and five outputs, namely H2, Cl2, NaOH, heat, and electricity. Unlike most of the studies in the literature, this system does not use only PV or only a photoelectrochemical reactor. With this approach, solar energy utilization is maximized, and the wasted portion is minimized. By selecting PV/T rather than PV, the performance of the panels is maximized because recovering the by-product heat as a system output in addition to electricity, and the PV/T has less waste and higher efficiency. The present reactor does not use any additional electron donors, so the wastewater discharge is only depleted NaCl solution, which makes the system significantly cleaner than the ones available in the literature. The specific aim of this study is to demonstrate the optimum operating parameters to reach the maximum achievable production rates and efficiencies while keeping the exergy destruction as little as possible. In this study, there are four case studies, and in each case study, one decision variable is optimized to get the desired performance results. Within the selected operating parameter range, all performance criteria (except exergy destruction) are normalized and ranked for proper comparison. The maximum production rates and efficiencies with the least possible exergy destruction are observed at the operating temperature of 30 °C. At 30 °C, 4.18 g/h H2, 127.55 g/h Cl2, 151 W electricity, and 716 W heat are produced with an exergy destruction rate of 95.74 W and 78% and 30% energy and exergy efficiencies, respectively.  相似文献   

11.
This paper provides fundamental principles to study the thermodynamic performance of a new screw expander–based solar thermal electricity plant. While steam turbines are generally used in direct steam generation solar systems without admitting fluid in two-phase conditions, steam screw expanders, as volumetric machines, can convert thermal to mechanical energy also by expanding liquid-steam mixtures without a decline in efficiency. In effect, steam turbines are not as competitive as screw expanders when the net power is smaller than 2 MW and for low-grade heat sources. The solar electricity generation system proposed in this paper is based on the steam Rankine cycle: Water is used as both working fluid and storage, parabolic trough collectors are used as a thermal source, and screw expanders are used as power machines. Since screw expanders can operate at off-design working conditions in several situations when installed in direct steam generation solar plants, studying expander performance under fluctuating working situations is a crucial issue. The main aim of the present paper is to establish a thermodynamic model to study the energetic benefits of the proposed power system when off-design operating conditions and variable solar radiation occur. This entails, first and foremost, developing overexpansion and underexpansion numerical models to describe the polytropic expansion phase, which considers all the losses affecting performance of the screw expander under real operating conditions. To assess the best operating conditions and maximum efficiency of the whole power system at part-load working conditions under fluctuating solar radiations, parametric optimization is then improved in a wide range of variable working conditions, assuming condensation pressures of water increasing from 0.1 to 1 bar, under an evaporation temperature rising from 170°C to 300°C.  相似文献   

12.
The advantage of PV–thermal hybrid systems is their high total efficiency. By using concentrating hybrid systems, the cost per energy produced is reduced due to simultaneous heat and electricity production and a reduced PV cell area. In this article, the optical efficiency of a water-cooled PV–thermal hybrid system with low concentrating aluminium compound parabolic concentrators is discussed. The system was built in 1999 in Älvkarleby, Sweden (60.5° N, 17.4° E) with a geometric concentration ratio of C=4 and 0.5 kWp electric power. The yearly output is 250 kWh of electricity per square metre solar cell area and 800 kWh of heat at low temperatures per square metre solar cell area. By using numerical data from optical measurements of the components (glazing, reflectors, and PV cells) the optical efficiency, ηopt, of the PV–CPC system has been determined to be 0.71, which is in agreement with the optical efficiency as determined from thermal and electrical measurements. Calculations show that optimised antireflection-treated glazing and reflectors could further increase the electric power yield.  相似文献   

13.
A hybrid system design integrating a thermoelectric (TE) module has recently represented the advanced photovoltaic (PV) prototype with promoted efficiency for utilizing solar energy from the surroundings. Our present work during development of such a hybrid PV/TE system evaluates the thermal behaviors and the cooling performance associated with when integrating TE and heat sink modules. It has been noticed that a more effective structure through combining a heat sink with a TE module profits heat dissipation by cooling down the whole cell by ~ 8 °C, wherein the TE module itself demonstrates the cooling performance by ~ 27% enhancement in addition to its conventional role for electricity generation. Therefore, the PV/TE with a proper design can be used as a passive method for improving the cell efficiency as well as alleviating hot spot, which is typically occurring when the cell is unevenly heated during its operation. These results could be useful for further advancement on stability of power generation of a hybrid PV/TE system and may also be important for developing high-powered light emit diode.  相似文献   

14.
Efficient use of solar energy in industrial applications calls for a cost‐effective thermal energy storage (TES) system. Packed bed is a viable technology for high‐temperature TES applications. The packing material acting as the TES material has to be sustainable with favorable thermal properties and compatible with the heat transfer fluid. Demolition wastes—leftovers from urban regeneration projects—in many countries are a big burden economically and environmentally. This paper aims to investigate the potential of using demolition wastes as sensible thermal energy storage (STES) material in packed bed column for industrial solar applications below 300°C. STES material samples have been prepared using binding additives with demolition waste dust. Chemical composition, mechanical strength, and thermal analysis tests have been carried out to determine suitability of STES samples. The DSC results showed that new STES samples had average specific heat capacity of 1000 to 1460 J/kg C in temperature range of 100°C to 500°C. The samples were thermally stable until 750°C under TGA analysis. These results showed that demolition wastes are potential low‐cost sensible heat storage material for applications up to 750°C. Furthermore, valorization of demolition wastes as sensible heat storage material is a sustainable approach in reducing fossil fuel consumption of high‐temperature industrial applications and avoiding the use of natural resources as packing material.  相似文献   

15.
Nuclear energy is considered a key alternative to overcome the environmental issues caused by fossil fuels. It offers opportunities with an improved operating efficiency and safety for producing power, synthetic fuels, delivering process heat and for multigeneration applications. The high-temperature nuclear reactors, although possess great potential for integration with thermochemical water-splitting cycles for hydrogen production, are not yet commercially established. Current nuclear reactor designs providing heat at relatively low temperature can be utilized to produce hydrogen using thermochemical cycles if the temperature of their thermal heat is increased. In this paper, a hybrid chemical-mechanical heat pump system is proposed for upgrading the heat of the Enhanced CANDU (EC6) reactor design to the quality required for the copper-chlorine (Cu–Cl) hybrid thermochemical water splitting cycle operating at 550–600 °C. A modification to the heat pump is proposed to bring the heat to temperature higher than 650 °C with operating coefficient of performance estimated as 0.65.  相似文献   

16.
A hybrid solar hot water and Bi2Te3-based thermoelectric generator (TEG) unit using a heat pipe evacuated tube collector with mini-compound parabolic concentrator (mini-CPC) is proposed. In this unit, the heat from the heat pipe evacuated tube solar collector is transferred to the hot side of TEG. Simultaneously, water cooling is used at the cold side to maintain the temperature difference. Electricity is generated by TEG and the remaining heat is transferred to water at the same time. This paper investigates how to convert excess solar heat into electricity more effectively. A mathematical model regarding this unit is developed and validated. It is found that the mini-CPC can significantly improve the electrical efficiency. The optimal thermal conductance of TEG is determined, which could make the best use of excess solar heat. The excess solar heat can be effectively converted into electricity when ZT of Bi2Te3 can be improved from 100 °C to 200 °C. Using TEG with ZT = 1.0 and a geometrical concentrating ratio at 0.92, electrical and thermal efficiencies of this system are predicted to be 3.3% and 48.6% when solar radiation and water temperature are 800 Wm−2 and 20 °C, respectively.  相似文献   

17.
The majority of industrial, residential, service, and business customers, as well as agriculture farms, are still dominated by fossil fuels as primary energy sources. They are mostly equipped with steam and/or gas turbines, steam boilers, and water heaters (running on electricity or gas) for conversion units. The challenge to increase the share of renewables in the primary energy mix could be met by integrating solar, wind, and biomass as well as some types of waste with the fossil fuels. This work analyzes some of the most common heat transfer applications at total sites comprising users of the types just mentioned. The energy demands, the local generation capacities, and the efficient integration of renewables into the corresponding total site CHP (combined heat and power) energy systems, based on efficient heat transfer, are optimized, minimizing heat waste and carbon footprint, and maximizing economic viability.  相似文献   

18.
The solar thermal central receiver technology, known as solar power towers, is rapidly evolving to a state of near-term energy availability for electrical power generation and industrial process heat applications. The systems consist of field arrays of heliostat reflectors, a central receiver boiler, short term thermal storage devices, and either turbine-generators or heat exchangers. Fluid temperatures up to 550°C are currently achievable, and technology developments are underway to reach 1100°C. Six solar power towers are now under construction or in test operation in five countries around the world.  相似文献   

19.
Parabolic trough power plants are currently the most commercially applied systems for CSP power generation. To improve their cost-effectiveness, one focus of industry and research is the development of processes with other heat transfer fluids than the currently used synthetic oil. One option is the utilization of water/steam in the solar field, the so-called direct steam generation (DSG).Several previous studies promoted the economic potential of DSG technology (Eck et al., 2008b, Price et al., 2002, Zarza, 2002). Analyses’ results showed that live steam parameters of up to 500 °C and 120 bars are most promising and could lead to a reduction of the levelized electricity cost (LEC) of about 11% (Feldhoff et al., 2010). However, all of these studies only considered plants without thermal energy storage (TES).Therefore, a system analysis including integrated TES was performed by Flagsol GmbH and DLR together with Solar Millennium AG, Schott CSP GmbH and Senior Berghöfer GmbH, all Germany. Two types of plants are analyzed and compared in detail: a power plant with synthetic oil and a DSG power plant. The design of the synthetic oil plant is very similar to the Spanish Andasol plants (Solar Millennium, 2009) and includes a molten salt two-tank storage system. The DSG plant has main steam parameters of 500 °C and 112 bars and uses phase change material (PCM) for the latent and molten salt for the sensible part of the TES system. To enable comparability, both plants share the same gross electric turbine capacity of 100 MWel, the same TES capacity of 9 h of full load equivalent and the same solar multiple of the collector field of about two.This paper describes and compares both plants’ design, performance and investment. Based on these results, the LEC are calculated and the DSG plant’s potential is evaluated. One key finding is that with currently proposed DSG storage costs, the LEC of a DSG plant could be higher than those of a synthetic oil plant. When considering a plant without TES on the other hand, the DSG system could reduce the LEC. This underlines the large influence of TES and the still needed effort in the development of a commercial storage system for DSG.  相似文献   

20.
《Renewable Energy》2007,32(3):365-381
The study deals with a solar or waste heat driven three-bed adsorption cooling cycle employing mass recovery scheme. A cycle simulation computer program is developed to investigate the performance of the chiller. The innovative chiller is driven by exploiting solar/waste heat of temperatures between 60 and 90 °C with a cooling source at 30 °C for air-conditioning purpose. The performance of the three-bed adsorption chiller with mass recovery scheme was compared with that of the three-bed chiller without mass recovery. It is found that cooling effect as well as solar/waste heat recovery efficiency, η of the chiller with mass recovery scheme is superior to those of three-bed chiller without mass recovery for heat source temperatures between 60 and 90 °C. However, COP of the proposed chiller is higher than that of the three-bed chiller without mass recovery, when heat source temperature is below 65 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号