首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Transmitter diversity in the downlink of code-division multiple-access (CDMA) systems achieves similar performance gains to the mobile-station receiver diversity without the complexity of a mobile-station receiver antenna array. Pre-RAKE precoding at the transmitter can be employed to achieve the multipath diversity without the need of the RAKE receiver at the mobile station. We examine feasibility of several transmitter diversity techniques and precoding for the third-generation wideband CDMA (WCDMA) systems. In particular, selective transmit diversity, transmit adaptive array and space-time pre-RAKE (STPR) techniques are compared. It is demonstrated that the STPR method is the optimal method to combine antenna diversity and temporal precoding. This method achieves the gain of maximum ratio combining of all space and frequency diversity branches when perfect channel state information is available at the transmitter. We employ the long range fading prediction algorithm to enable transmitter diversity techniques for rapidly time varying multipath fading channels.  相似文献   

2.
Multiple-access interference (MAI) and multipath fading are two of the most significant factors limiting the capacity and performance of direct-sequence code-division multiple-access (DS-CDMA) systems. In this paper, synchronous multiuser receivers that combine antenna diversity, RAKE reception, and a multipath decorrelator for MAI cancellation are analyzed in a Nakagami faded environment using a maximal ratio combiner or a selection combiner. A coherent binary phase-shift keying employing DS-CDMA is considered. Arbitrary branch correlation is also considered for any diversity order in the case of identical severity fading on the branches.  相似文献   

3.
Multipath fading severely limits the performances of conventional code division multiple-access (CDMA) systems. Since every signal passes through an independent frequency-selective fading channel, even modest cross-correlations among signature sequences may induce severe near-far effects in a central multiuser receiver. This paper presents a systematic approach to the detection problem in CDMA frequency-selective fading channels and proposes a low complexity linear multiuser receiver, which eliminates fading induced near-far problem.We initially analyze an optimal multiuser detector, consisting of a bank of RAKE filters followed by a dynamic programming algorithm and evaluate its performance through error probability bounds. The concepts of error sequence decomposition and asymptotic multiuser efficiency, used to characterize the optimal receiver performance, are extended to multipath fading channels.The complexity of the optimal detector motivates the work on a near-far resistant, low complexity decorrelating multiuser detector, which exploits multipath diversity by using a multipath decorrelating filter followed by maximal-ratio combining. Analytic expressions for error probability and asymptotic multiuser efficiency of the suboptimal receiver are derived that include the effects of multipath fading, multiple-access interference and signature sequences correlation on the receiver's performance.The results indicate that multiuser detectors not only alleviate the near-far problem but approach single-user RAKE performance, while preserving the multipath diversity gain. In interference-limited scenarios multiuser receivers significantly outperform the RAKE receiver.This paper was presented in part at the Twenty-Sixth Annual Conference on Information Sciences and Systems, Princeton, NJ, March 1992 and MILCOM'92, San Diego, CA, October 1992. This work was performed while author was with the Department of Electrical and Computer Engineering, Northeastern University, Boston, USA.  相似文献   

4.
Analytical expressions for the error probability of linear multipath-decorrelating receivers with coherent and differentially coherent reception are derived. Both multi-user receivers have superior performance compared to the RAKE receiver and eliminate error probability floor caused by multiple-access interference on a code-division multiple access (CDMA) reverse link. Results also emphasize benefits of using coherent multi-user reception with maximal-ratio combining in frequency-selective fading channels  相似文献   

5.
This paper studies the design and implementation of a linear minimum mean-square error (LMMSE) receiver in asynchronous direct-sequence code-division multiple-access (DS-CDMA) systems that employ long-code pseudonoise (PN) sequences and operate in multipath environments. The receiver is shown to be capable of multiple-access interference (MAI) suppression and multipath diversity combining without the knowledge of other users' signature sequences. It maximizes output signal-to-noise ratio (SNR) with the aid of a new chip filter which exploits the cyclostationarity of the received signal and combines all paths of the desired user that fall within its supported time span. The performance of the LMMSE receiver is compared with that of the coherent selective RAKE receiver. The achieved gain is on the order of 0.6-1.8 dB in dense multipath environments of current narrow-band settings and nonuniform power distribution scenarios of next-generation CDMA systems. An example of adaptive implementation of the LMMSE receiver is presented and accompanied by complexity analysis, training curves, and quantitative performance comparisons illustrating the convergence rate and steady-state performance of the adaptive algorithms.  相似文献   

6.
Capacity estimation in a code-division multiple-access system is closely related to power control schemes, which complicates the analysis due to the interaction between the signal power and the interference from other users and from other paths. For a signal-to-interference ratio (SIR)-based power control scheme, most previous work has been restricted to a single-cell system or to a multiple-cell system neglecting the effect of multipath fading. This paper is to give a theoretical foundation to the possible reverse link capacity of a multiple-cell system with perfect SIR-based power control, assuming two different multipath Rayleigh fading channel models: uniform and exponential power delay profiles. The effects of the numbers of resolvable propagation paths and RAKE fingers, and other system parameters such as the required Eb/I0, the processing gain, and the maximum allowable transmit power of a mobile station, are investigated. The results are compared between single- and multiple-cell systems. When the number of resolvable paths is one or the number of Rake fingers is one, the link capacity becomes zero in a multiple-cell environment. This can be avoided by the use of antenna diversity. Antenna diversity reception is found to linearly increase the link capacity as the number of antennas increases  相似文献   

7.
The receivers that combine spatial antenna diversity with temporal multipath diversity are known as two-dimensional (2-D) RAKE receivers. In this paper, we consider the outage probability and the bit error rate performance of a coherent binary phase shift keying 2-D RAKE receiver in the context of an asynchronous direct sequence (DS)-code division multiple access (CDMA) system operating in a Nakagami-m fading channel with real and arbitrary fading parameters. The closed-form expressions derived for the two wireless performance measures are easily evaluated numerically and enable the link designer to examine the effects of system parameters, such as the number of receive antennas, RAKE fingers per antenna, and asynchronous CDMA users in the cell, as well as channel conditions, such as the amount of fading in the combined paths and the multipath intensity profile of the channel on the link performance. In addition, the diversity loss due to correlated fading among the spatially separated RAKE fingers is quantified.  相似文献   

8.
异步CDMA移动通信系统中采用分集接收的多用户检测器   总被引:1,自引:0,他引:1  
在CDMA移动通信系统中,多址接入干扰可以通过多用户检测技术来消除,而分集接收可以减小信道衰落的影响。本文给出了一类应用解相关检测、天线分集、RAKE多径分集技术的接收机,并对这一类接收机的性能做了分析。结果表明,在上行链路中,应用多用户检测和分集接收能够极大地提高接收机的性能。  相似文献   

9.
In CDMA mobile communication systems, multiple access interference can be canceled by multiuser detection technique. The Degradation by channel fading can be reduced by diversity reception. This paper investigates a family of multiuser receivers that combined decor-relating detection, antenna diversity and RAKE multipath diversity. The performance of the multiuser receivers is analyzed. The results demonstrate a significant increase in the performance of the receivers by using multiuser detection and diversity reception.  相似文献   

10.
A generalized RAKE receiver for interference suppression   总被引:6,自引:0,他引:6  
Currently, a global third-generation cellular system based on code-division multiple-access (CDMA) is being developed with a wider bandwidth than existing second-generation systems. The wider bandwidth provides increased multipath resolution in a time-dispersive channel, leading to higher frequency-selectivity. A generalized RAKE receiver for interference suppression and multipath mitigation is proposed. The receiver exploits the fact that time dispersion significantly distorts the interference spectrum from each base station in the downlink of a wideband CDMA system. Compared to the conventional RAKE receiver, this generalized RAKE receiver may have more fingers and different combining weights. The weights are derived from a maximum likelihood formulation, modeling the intracell interference as colored Gaussian noise. This low-complexity detector is especially useful for systems with orthogonal downlink spreading codes, as orthogonality between own cell signals cannot be maintained in a frequency-selective channel. The performance of the proposed receiver is quantified via analysis and simulation for different dispersive channels, including Rayleigh fading channels. Gains on the order of 1-3.5 dB are achieved, depending on the dispersiveness of the channel, with only a modest increase in the number of fingers. For a wideband CDMA (WCDMA) system and a realistic mobile radio channel, this translates to capacity gains of the order of 100%  相似文献   

11.
The performance of a multiple-cell direct-sequence code division multiple-access cellular radio system is evaluated. Approximate expressions are obtained for the area-averaged bit error probability and the area-averaged outage probability for both the uplink and downlink channels. The analysis accounts for the effects of path loss, multipath fading, multiple-access interference, and background noise. Two types of differentially coherent receivers are considered: a multipath rejection receiver and a RAKE receiver with predetection selective combining. Macroscopic base station diversity techniques and uplink and downlink power control are also topics of discussion  相似文献   

12.
The main targets of any direct-sequence code division multiple-access (DS/CDMA) mobile communication system are to overcome the multipath fading influences as well as the near/far effect and to increase the capacity. Many optimal and suboptimal detection approaches have been proposed and analyzed in the literature. Unfortunately, most of them share the drawback of requiring a complex implementation and do not represent a practical solution. This paper proposes a simple interference cancellation receiver for applications in DS/CDMA uplink communications. This receiver allows users to overcome the near/far effect and to enhance the system capacity. Differently from previous methods, the interference cancellation is performed on a one-shot basis. The performance of the proposed interference cancellation receiver is derived through computer simulations. However, a suitable analytical approach is also presented in the appendix in order to evaluate the bit error rate (BER) performance in the particular case of synchronous users and the transmission channel being affected only by additive white Gaussian noise (AWGN). The good behavior of the proposed approach is demonstrated by means of comparisons in terms of the BER performance and implementation complexity with the classical RAKE receiver and different multiuser receivers previously proposed in the literature on this subject  相似文献   

13.
RAKE receivers and sectorized antennas are used in direct-sequence/code-division multiple-access (DS/CDMA) cellular systems to improve the system performance. This paper presents a statistical method for analyzing the performance of DS/CDMA cellular radio systems employing RAKE receivers and sectorized antennas. Average bit error rates in the system are estimated considering the multipath fading effects of the environment. (The fast fading is assumed to be Rayleigh distributed, and the distance-dependent means of the multipath components have an exponential power delay profile.) The analysis of RAKE receivers quantifies the performance improvement that could be achieved by increasing the number of RAKE fingers. Sectorized antennas improve the system performance by reducing the interference at the receiver. In a perfectly sectorized system, assuming three sectors per cell, the capacity of the system can be improved by a factor of three. However, due to the imperfection in practical antennas, it is not possible to achieve this improvement. The performance of systems employing practical sectorized antennas (with finite front-to-back ratios and overlapping sectors) is compared with the performance of perfectly sectorized systems. The analysis shows that the incremental performance improvement diminishes with each incremental increase in the number of RAKE fingers. Performance degradation due to finite front-to-back ratio is shown to be insignificant for practical values of the front-to-back ratio of sectorized antennas. However, the reliability of mobile reception can be degraded significantly in areas where adjacent sectors overlap  相似文献   

14.
The uplink and downlink performance of a digital cellular radio system that uses direct sequence code division multiple access is evaluated. Approximate expressions are derived for the area averaged bit error probability while accounting for the effects of path loss, log-normal shadowing, multipath-fading, multiple-access interference, and background noise. Three differentially coherent receivers are considered: a multipath rejection receiver, a RAKE receiver with predetection selective diversity combining, and a RAKE receiver with postdetection equal gain combining. The RAKE receivers are shown to improve the performance significantly, except when the channel consists of a single faded path. Error correction coding is also shown to substantially improve the performance, except for slowly fading channels  相似文献   

15.
The performance of a multicarrier direct sequence code-division multiple-access (CDMA) system employed in the forward link of a cellular system operating over a Rayleigh fading channel is analyzed and compared to the performance of both single-carrier CDMA and hybrid multicarrier CDMA/frequency division multiplexing systems. A RAKE receiver is provided for each subcarrier. We compare the performance of all three systems for various multipath intensity profiles. It is found that for a service requiring high quality and a small number of users, the multicarrier system is the best, but for a service requiring low quality and a large number of users, the hybrid system can support more users than the others. Also, for the case when nonorthogonal codes are used, the multiple-access interference in different resolvable paths are correlated. In that case, to maximize the signal-to-noise ratio in a correlated interference environment; maximal-ratio combining (MRC) is not optimal. However, we found that there is not much difference between the optimum combining and the conventional MRC  相似文献   

16.
An effect of multipath fading on the performance of a cellular code-division multiple-access (CDMA) system is analyzed in this paper. A wide-sense stationary uncorrelated scattering (WSSUS) channel model and the coherent binary phase-shift keying (BPSK) with asynchronous direct-sequence (DS) spreading signal are assumed in the analysis. The average error probability for both the forward link and reverse link of a cellular CDMA system over a frequency-selective fading channel using a conventional correlation-type receiver and RAKE receiver are derived. The impact of imperfect power control and channel capacity of a cellular CDMA system is also investigated. The closed forms of average error probability derived in the paper can save a lot of computation time to analyze the performance and channel capacity of a cellular CDMA system. The analytical results show that the performance and maximum transmission rate of cellular CDMA systems degrade with an increase in the number of simultaneous users and the number of interfering cells. The signal-to-interface ratio (SIR) for the reverse link derived in this paper can directly describe the interrelationships among a number of paths, number of users, number of interfering cells, fading factors, and maximum variation of a received unfaded signal  相似文献   

17.
The problem of pilot-symbol-aided estimation of multipath fading channels in up-link code-division multiple-access (CDMA) systems is considered. The transmitted symbol streams of each user are divided into time-slots; and each time-slot contains a number of pilot-symbols followed by information data symbols. Channel estimation is based on interpolation of the channel values corresponding to the pilot symbols in adjacent time-slots. Existing channel estimation techniques, including the weighted multislot average method and the wavelet expansion method, are studied. Two new channel estimation methods, namely, the robust channel interpolator, and the polynomial channel interpolator, are developed and are compared with these techniques. It is seen that the two new channel estimation methods significantly outperform the existing methods in multipath fading CDMA systems, for a wide range of Doppler values, and under various receiver schemes (with single or multiple receive antennas), such as the RAKE receiver, the interference cancellation receiver, and a receiver which performs iterative channel estimation and interference cancellation.  相似文献   

18.
This paper introduces a multistage interference cancellation (MIC) technique with diversity reception for quadrature phase shift keying (QPSK) asynchronous direct-sequence code division multiple access (DS/CDMA) systems over frequency-selective multipath Rayleigh fading channels. Unlike the previous MIC, which tries to remove the lump sum of the multiple-access interference (MAI) and self-interference (SI), this introduced MIC attempts to cancel only the MAI and part of the SI due to the intersymbol interference, while treating the remaining SI created by the current symbol as useful information for symbol decision. In this technique, the RAKE combining is used to collect signal replicas over multiple fading paths. Upper and lower bounds on the bit error probability are derived using a Gaussian approximation and the characteristic function method. Furthermore, effects of channel estimation error on the performance are studied. Analytical and simulation results show that the introduced MIC can provide a performance extremely close to that in an ideal single-user environment and outperforms the previous MIC even in the presence of channel estimation error  相似文献   

19.
A microcellular local area network (LAN) for indoor communications is proposed using code-division multiple access (CDMA) and differential phase-shift keying (DPSK) for data modulation. The pseudonoise (PN) codes in the transmitters of the base station are mutually synchronized. For this purpose, sets of Gold code sequences having low cross correlation have been found by an exhaustive computer search. Together with wideband measurements of the indoor radio channel at 900 MHz, a five-path RAKE receiver was designed to combat fading effects and to process the time diversity by using multipath signal reception. Each receiver path is demodulated independently. Several methods of diversity combining of these paths have been investigated. Acquisition and tracking of the spreading code in the receiver are controlled by a digital signal processor (DSP). Experimental results of the CDMA system are presented, showing the behavior in a multipath environment  相似文献   

20.
We evaluate the capacity and bandwidth efficiency of microcellular CDMA systems. Power control, multipath diversity system bandwidth, and path loss exponent are seen to have a major impact on the capacity. The CDMA system considered uses convolutional codes, orthogonal signalling, multipath/antenna diversity with noncoherent combining, and fast closed-loop power control on the uplink (portable-to-base) direction. On the downlink (base-to-portable), convolutional codes, BPSK modulation with pilot-signal-assisted coherent reception, and multipath diversity are employed. Both fast and slow power control are considered for the downlink. The capacity of the CDMA system is evaluated in a multicell environment taking into account shadow fading, path loss, fast fading, and closed-loop power control. Fast power control on the downlink increases the capacity significantly. Capacity is also significantly impacted by the path loss exponent. Narrowband CDMA (system bandwidth of 1.25 MHz) requires artificial multipath generation on the downlink to achieve adequate capacity. For smaller path loss exponents, which are more likely in microcellular environments, artificial multipath diversity of an order of as high as 4 may be needed. Wideband CDMA systems (10 MHz bandwidth) achieve greater efficiencies in terms of capacity per MHz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号