首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates three aspects of linear-low-density polyethylene (LLDPE) rheological properties: shear viscosity variations with shear rate and temperature, tensile behavior determined with an extensiometer, and extrusion defects. The differences in shear viscosity variation with shear rate and temperature between LLDPE and LDPE (low-density polyethylene) are shown. These differences, attributed to wider molecular weight distribution and to long chain branching (LCB) in LDPE, involve different extrusion behaviors. The lack of LCB in LLDPE can be demonstrated by comparison of the measured Newtonian viscosity with the value of the same parameter calculated from molecular weight distribution and composition law of Newtonian viscosities. The lack of LCB leads to good melt extensibility, which is shown by tensile properties of polyethylene melts determined with a non-isothermal extensiometer. The melt fracture phenomenon is studied because it promotes surface defects on bubbles in film application. Extrudate distortions are examined at the laboratory extruder outlet. This test shows differences between LLDPE and LDPE, but also between some LLDPE samples.  相似文献   

2.
In this work we present an experimental study of shear and apparent elongational behavior of linear low-density (LLDPE) and low-density (LDPE) polyethylene blends by means of capillary rheometry. The characterization of these rheological properties is crucial in the design of a blend that combines the ease of processing of LDPE with the mechanical advantages of the LLDPE. Two different low-density polyethylenes and one common linear low-density polyethylene were used to prepare the blends. The results obtained indicate a strong sensitivity of the rheology of the blend to changes in the molecular weight of the LDPE employed. For the higher molecular weight LDPE, the shear viscosity of the blend was essentially equal to that of the LDPE homopolymer up to a concentration of 25% of LLDPE, whereas the apparent extensional viscosity was appreciably lower. For the lower molecular weight LDPE, the same trend was obtained regarding the shear viscosity, but in this case the apparent extensional viscosity of the blend was somewhat higher than that of the LDPE homopolymer.  相似文献   

3.
Two low-density polyethylenes, a linear low-pressure (LLDPE) and a branched high-pressure (LDPE), have been compared. Their shear and extensional behavior and melt fracture phenomena have been investigated, and some mechanical and optical properties of their blown films have been measured. The rheological analysis showed major differences between the samples, both in shear viscosity and in elongational viscosity. The LLDPE exhibited two types of melt fracture, the first of which—a fine scale extrudate roughness—was not shown by the LDPE and appeared at a very low shear rate. The concomitance in LLDPE of a high shear viscosity and a low elongational viscosity and the presence of melt fracture at low shear rate resulted in its more difficult processing into film. The mechanical properties of the LLDPE film approached those of high-density polyethylene while the optical characteristics were in the range of LDPE. Such a coexistence of properties makes LLDPE an interesting material for film production.  相似文献   

4.
The extensional rheological properties of three grades of polyethylene melts, low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and high density polyethylene (HDPE) were measured using a melt spinning technique under the test conditions with temperature ranging from 150 to 210°C and extrusion rate varying from 11.25 to 22.50 mm s?1. The results showed that the melt strength decreased with a rise of temperature while increased with an increase of extensional rate. With the rise of extensional strain rate and temperature, the melt extensional viscosity decreased. The extensional stress and viscosity reduced with increasing extrusion velocity when the temperature and extensional rate were constant. Moreover, the melt strength and extensional viscosity of the LDPE resin was the highest and the LLDPE was the lowest under the same experimental conditions. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

5.
Poly (lactic acid) (PLA) and Linear low-density polyethylene (LLDPE) were compounded in a corotating twin screw extruder. PE-g-glycidyl methacrylate was also added as a reactive compatibilizer in PLA/LLDPE blend system, which lowered interfacial tension between PLA and LLDPE. Blown films were prepared by using a single-screw extruder for all compounded blends. The investigation of the rheological properties of a polymeric system is very important to study the processability and understand structure-property relationship in blown films. In the present research work, the rheological properties have been investigated to assess the processability of blown films of PLA/LLDPE blends. Oscillatory shear rheology viscoelastic spectra showed an increase in the storage and loss moduli with the increase in LLDPE and compatibilizer content, which indicated pronounced viscoelastic behavior of PLA with the addition of LLDPE and compatibilizer. A steady increase in the value of extensional viscosity as a function of time was observed with the addition of LLDPE and compatibilizer in PLA. The blends with higher LLDPE content exhibited much more prominent strain hardening characteristics than those with lower LLDPE content.  相似文献   

6.
The properties of low-density polyethylene (LDPE) and its blend with linear low-density polyethylene LDPE : LLDPE (75 : 25) modified with varying concentrations of dicumyl peroxide (DCP) were compared. Chemical modification was carried out in a Brabender plasticorder under set conditions of temperature, rotor speed, and time. The results are reported in terms of the type of polyethylene used, concentration of DCP, mixing torque, temperature and time on the processing, and mechanical and physical properties of the modified samples. Interpretation of the results is given in terms of gel contents which relate to the three-dimensional network structure of polyethylene. The modified blend forms a denser network structure and, hence, better product properties relative to that of modified LDPE, indicating the influence of LLDPE in increasing the rate and extent of crosslinking on blending with LDPE. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:789–797, 1998  相似文献   

7.
Successive passes through an extruder can modify the melt morphology of low-density polyethylene (LDPE) by applying a shearing process. The major effects of shear modification are to decrease the elastic properties, as evidenced by the decrease in extrudate swell at the exit of a capillary and in melt viscosity at a low-frequency region. The effect of shear modification is also shown by the delay in the onset of melt fracture upon extrusion. The critical shear stress resulted from extrudate appearance, and apparent discontinuity in the flow curve of LDPE shows a similar value with polypropylene rather than those of LLDPE and HDPE. The shearing histories experienced by these materials did not result in any measurable change in molecular weight, so that the chemical modification process such as degradation and crosslinking may be ruled out. These behaviors were also confirmed to the fact that the extrudate swell was fully reversible by annealing in a molten state. The effects of shear modification on rheological properties could be explained by the changes in melt morphology owing to the disentanglement of temporary couplings between long branches. Also, a reduction in melt elasticity by shear modification of LDPE can be used as an effective tool to improve the surface roughness of extrudates in the cable-making process. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2187–2195, 1998  相似文献   

8.
Linear low-density polyethylene (LLDPE)/polybutadiene (PB) and LLDPE/poly(styrene-b-butadiene-b-styrene) (SBS) binary blends were prepared by simple melt mixing or by reactive blending in the presence of a free-radical initiator, and for comparison, pure LLDPE was treated under the same conditions with a comparable free-radical initiator concentration. The effect of the reactive melt mixing on the morphology of the blends was studied with transmission electron microscopy, and the corresponding particle size distributions were analyzed and compared to highlight the effects of the crosslinking and grafting phenomena. Thermal properties of the obtained materials were investigated with differential scanning calorimetry and dynamic mechanical thermal analysis (DMTA). In particular, the effect of the reactive mixing parameters on the amorphous phase mobility was investigated. The influence of the chemical modification on the crystallization behavior of LLDPE, neat and blended with PB and SBS, was also studied with dynamic and isothermal differential scanning calorimetry tests, and the isothermal thermograms were analyzed in light of the Avrami equation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
The reactive extrusion of maleic anhydride grafted polypropylene (PP‐g‐MAH) with ethylenediamine (EDA) as coupling agent is carried out in a corotating twin‐screw extruder to produce long chain branched polypropylene (LCBPP). Part of PP‐g‐MAH is replaced by maleic anhydride grafted high‐density polyethylene (HDPE‐g‐MAH) or linear low‐density polyethylene (LLDPE‐g‐MAH) to obtain hybrid long chain branched (LCB) polyolefins. Compared with the PP‐g‐MAH, PE‐g‐MAH, and their blends, the LCB polyolefins exhibit excellent dynamic shear and transient extensional rheological characteristics such as increased dynamic modulus, higher low‐frequency complex viscosity, broader relaxation spectra, significantly enhanced melt strength and strain‐hardening behaviors. The LCB polyolefins also have higher tensile strength, tensile modulus, impact strength and lower elongation at break than their blends. Furthermore, supercritical carbon dioxide (scCO2) is constructively introduced in the reactive extrusion process. In the presence of scCO2, the motor current of the twin extruder is decreased and LCB polyolefins with lower melt flow rate (MFR), higher complex viscosity and increased tensile strength and modulus can be obtained. This indicates that the application of scCO2 can reduce the viscosity of melt in extruder, enhance the diffusion of reactive species, and then facilitate the long chain branching reaction between anhydride group and primary amine group. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Six film samples of varying compositions of low-density polyethylene (LDPE); (20–45 wt%) and linear low-density polyethylene (LLDPE); (25–45 wt%) having a fixed percentage of high-density polyethylene (HDPE) at 30 wt% have been extruded by melt blending in a single screw extruder (L/D ratio = 20:1) of uniform thickness of 2 mil. The tensile strength and elongation at break have been found to increase up to 40 wt% with LLDPE addition, starting from 25 wt% LLDPE, in the blends and then decreased. The blend sample containing 30 wt% LDPE, 40 wt% LLDPE, and 30 wt% HDPE (sample C-300) was found to be more thermally stable blend amongst all the prepared blends. In most of the blends, two exothermic peaks appeared that showed the formation of immiscible blend systems; this was further confirmed by scanning electron microscopic (SEM) analysis.  相似文献   

11.
The silane grafting and moisture crosslinking of different grades of polyethylene have been investigated. Three types of polyethylene (HDPE, LLDPE, and LDPE) with different molecular structures and similar melt flow indices were selected. The initiator was dicumyl peroxide (DCP), and the silane was vinyltrimethoxysilane. The grafting reaction was carried out in an internal mixer. The extent of grafting and the degree of crosslinking were determined, and hot‐set tests were carried out to evaluate the crosslink structure of the different polyethylenes. The LLDPE had the highest degree of grafting, while the LDPE had the least. The rate of crosslinking for LDPE was higher than that of HDPE and LLDPE. The gel content of LDPE was higher than that of HDPE and LLDPE. Hot‐set elongation and the number‐average molecular weight between crosslinks (Mc) were lower for LLDPE and LDPE than for HDPE. Increasing the silane/DCP percentage led to peroxide crosslinking, thereby decreasing the Mc and hot‐set elongation. The number‐average molecular weight (Mn), molecular weight distribution, and number of chain branches were the most important parameters affecting the silane grafting and moisture crosslinking. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

12.
The effect of compounding method is studied with respect to the rheological behavior and mechanical properties of composites made of wood flour and a blend of two main components of plastics waste in municipal solid waste, low-density polyethylene (LDPE) and high-density polyethylene (HDPE). The effects of recycling process on the rheological behavior of LDPE and HDPE blends were investigated. Initially, samples of virgin LDPE and HDPE were thermo-mechanically degraded twice under controlled conditions in an extruder. The recycled materials and wood flour were then compounded by two different mixing methods: simultaneous mixing of all components and pre-mixing, including the blending of polymers in molten state, grinding and subsequent compounding with wood flour. The rheological and mechanical properties of the LDPE/HDPE blend and resultant composites were determined. The results showed that recycling increased the complex viscosity of the LDPE/HDPE blend and it exhibited miscible behavior in a molten state. Rheological testing indicated that the complex viscosity and storage modulus of the composites made by pre-mixing method were higher than that made by the simultaneous method. The results also showed that melt pre-mixing of the polymeric matrix (recycled LDPE and HDPE) improved the mechanical properties of the wood–plastic composites.  相似文献   

13.
Dynamic shear experiments in the linear range of deformation and extensional tests at constant strain rate have been carried out on a linear low-density polyethylene (LLDPE) melt and on two branched low-density polyethylene (LDPE) melts with different amounts of long-chain branching. Both the dynamic shear moduli and the tensile stress obey the time–temperature superposition principle. A simple model based on a nonaffine generalized Maxwell model with two relaxation times is proposed to describe the rheological behavior in elongation of these melts. Close agreement between the model and the experimental data can be obtained by adjusting the two relaxation times and the “slip parameter” of entanglements. The variations of these parameters with strain rate and their relationship with molecular structure are discussed.  相似文献   

14.
Blends of polypropylene (PP)/linear low density polyethylene (LLDPE) were prepared by melt mixing in twin screw extruder at 190 °C. Polyfunctional monomer TMPTMA (trimethylolpropane-trimetacrylate) was added to the mixture as a crosslinking co-agent to improve the crosslinking or branching efficiency of the olefins during irradiation. The effect of LLDPE on the crosslinking or branching effectiveness and physical properties of PP was investigated in conjunction with the monomer content of LLDPE in the blends. Thermal stability, rheological properties and electron beam irradiation effectiveness of PP in presence of LLDPE were analyzed by DSC, TGA and RDS. Solution gel analysis and the presence of ?C=O in FT-IR test supported some crosslinking or branching that occurred after irradiation. Certain decrease in melting temperature (T m ) that was noticed after irradiation could have been the result of chain scissioning, which decreases the number of tie molecules in the amorphous region and consequently weakens the lamellar connections. Shear thinning effect and zero shear viscosity were improved by irradiation in the PE incorporated samples.  相似文献   

15.
PP/LDPE化学交联发泡的研究   总被引:1,自引:0,他引:1  
谢浩  杨隽  周立民  郭雅妮 《应用化工》2012,41(7):1132-1134,1139
聚丙烯(PP)熔融黏度较低,发泡过程中气泡容易从熔体中溢出。在PP中加入低密度聚乙烯(LDPE)和偶氮二异丙苯(DCP),提高PP交联度,从而大大提高PP的熔融黏度。研究了共混聚合物组分的种类和含量对PP交联度的影响。结果表明,在共混过程中,部分PP和LDPE分子在热作用下相互促进,产生了接枝交联;共混物比纯PP的泡孔结构优且发泡效果佳,当LDPE为70%,发泡剂为5%,DCP为0.36%时,PP的发泡效果最好。解决了PP发泡过程中出现的气孔塌陷现象。  相似文献   

16.
Polyethylene is a versatile polymer suitable for a large variety of flexible and rigid packaging applications. Its mechanical and rheological properties can be tuned across a wide range by controlling its molecular architecture, such as the amount and distribution of olefinic comonomers (short chain branching), long chain branching, and molecular weight distribution. Linear low-density polyethylene (LLDPE) is known for its high toughness which enables downgauged film structures and low-density polyethylene (LDPE) is known for its excellent shear thinning and melt strength which enables enhanced processability and high throughput, such as on blown film lines. In order to obtain a balance of toughness and processability on films produced on blown film lines, blends of LLDPE and LDPE are commonly used. In this paper, we describe additive-based approaches, including a new product, DOWLEX™ (TM = trademark of the Dow Chemical Company (“Dow”) or an affiliated company of Dow) GM AX01, which enhances melt strength and other rheological properties of polyethylene, enabling fabrication of films with lower LDPE content while still maintaining excellent rheological properties and higher toughness versus conventional LLDPE/LDPE blends. The higher toughness enables downgauging without loss of mechanical properties, which in turn reduces consumption of polymer resulting in a more sustainable solution.  相似文献   

17.
ABSTRACT

The melt spinning flow behaviour of a high-density polyethylene (HDPE) blended with a low-density polyethylene (LDPE) was studied using a melt spinning technique in temperature ranging from 160 to 200°C and die extrusion velocity varying from 9 to 36?mm?s?1. The results showed that the melt apparent extension viscosity of the blends was higher than those of the LDPE and HDPE; the melt apparent extension viscosity decreased with increasing temperature; while the melt apparent extension viscosity increased with increasing extension strain rate when the extension strain rate was lower than 0.2?s?1, and then decreased; the melt apparent extension viscosity reached up to a maximum value when extension strain rate was about 0.2?s?1; the relationship between the melt apparent extension viscosity and the LDPE weight fraction did not follow the mixing rule.  相似文献   

18.
Effects of blending low-density polyethylene (LDPE) with linear low-density polyethylene (LLDPE) were studied on extrusion blown films. The tensile strength, the tear strength, the elongation at break, as well as haze showed more or less additivity between the properties of LDPE and LLDPE except in the range of 20–40% where synergistic effects were observed. The LLDPE had higher tensile strength and elongation at break than did the LDPE in both test directions, as well as higher tear strength in the transverse direction. The impact energies of the LLDPE and the LDPE were approximately the same, but the tear strength of the LLDPE was lower than that of LDPE in the machine direction. The comparative mechanical properties strongly depend on the processing conditions and structural parameters such as the molecular weight and the molecular weight distribution of both classes of materials. The LLDPE in this study had a higher molecular weight in comparison to the LDPE of the study, as implied from its lower melt flow index (MFI) in comparison to that of the LDPE. The effects of processing conditions such as the blow-up ratio (BUR) and the draw-down ratio (DDR) were also studied at 20/80 (LLDPE/LDPE) ratio. Tensile strength, elongation at break, and tear strength in both directions became equalized, and the impact energy decreased as the BUR and the DDR approached each other.  相似文献   

19.
The effects of branching characteristics of low-density polyethylene (LDPE) on its melt miscibility with high-density polyethylene (HDPE) were studied using molecular simulation. In particular, molecular dynamics (MD) was applied to compute Hildebrand solubility parameters (δ) of models of HDPE and LDPE with different branch contents at five temperatures that are well above their melting temperatures. Values computed for δ agreed very well with experiment. The Flory-Huggins interaction parameters (χ) for blends of HDPE and different LDPE models were then calculated using the computed δ values. The level of branch content for LDPE above which the blends are immiscible and segregate in the melt was found to be around 30 branches/1000 long chain carbons at the chosen simulation temperatures. This value is significantly lower than that of butene-based linear low-density polyethylene (LLDPE) (40 branches/1000 carbons) in the blends with HDPE computed by one of the authors (polymer 2000; 41:8741). The major difference between LDPE and LLDPE models is that each modeled LDPE molecule has three long chains while each modeled LLDPE molecule had only one long chain. The present results together with those of the LLDPE/HDPE blends suggest that the long chain branching may have significant influence on the miscibility of polyethylene blends at elevated temperatures.  相似文献   

20.
Poly(lactic acid) (PLA)/(linear low-density polyethylene (LLDPE)–low-density polyethylene (LDPE)) PLA/(LLDPE-LDPE) ternary blends were prepared and characterized as function of the PLA content. (50/50) PLA/(LLDPE–LDPE) blend was also compatibilized using maleic anhydride grafted low-density polyethylene (PE-g-MA) incorporated with a concentration of 5 wt.%. PLA/(LLDPE–LDPE) blend composites have been prepared by dispersing 5 wt.% of an organophilic montmorillonite (Org-MMT), added according to two different mixing methods. These materials were subjected to several investigations such as X-rays diffraction (XRD), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry, and environmental tests. In the PLA glassy region, DMTA results showed that the storage modulus of PLA/(LLDPE–LDPE) blends decreases upon decreasing the PLA content. When PE-g-MA and Org-MMT were added, PLA exhibited a noticeable increase in the storage modulus across the glass transition region due the interface reinforcement and the enhancement of the blends stiffness. The decrease in the magnitude of the PLA tan δ peak was attributed to the decrease in the molecular mobility that could result from the increase in the interfacial resistance. XRD analysis showed that the method of dispersion of the nanoclay controls the final structural properties of the composites. (50/50) PLA/(LLDPE-LDPE) blend and composites revealed a satisfactory aptitude to biodegradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号