首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the coupling of free-space photons (vacuum wavelength of 830 nm) to surface plasmon modes of a silver nanowire. The launch of propagating plasmons, and the subsequent emission of photons, is selective and occurs only at ends and other discontinuities of the nanowire. In addition, we observe that the nanowires redirect the plasmons through turns of radii as small as 4 microm. We exploit the radiating nature of discontinuities to find a plasmon propagation length >3 +/- 1 microm. Finally, we observe that interwire plasmon coupling occurs for overlapping wires, demonstrating plasmon fan-out at subwavelength scales.  相似文献   

2.
Improved performance in plasmonic organic solar cells (OSCs) and organic light‐emitting diodes (OLEDs) via strong plasmon‐coupling effects generated by aligned silver nanowire (AgNW) transparent electrodes decorated with core–shell silver–silica nanoparticles (Ag@SiO2NPs) is demonstrated. NP‐enhanced plasmonic AgNW (Ag@SiO2NP–AgNW) electrodes enable substantially enhanced radiative emission and light absorption efficiency due to strong hybridized plasmon coupling between localized surface plasmons (LSPs) and propagating surface plasmon polaritons (SPPs) modes, which leads to improved device performance in organic optoelectronic devices (OODs). The discrete dipole approximation (DDA) calculation of the electric field verifies a strongly enhanced plasmon‐coupling effect caused by decorating core–shell Ag@SiO2NPs onto the AgNWs. Notably, an electroluminescence efficiency of 25.33 cd A?1 (at 3.2 V) and a power efficiency of 25.14 lm W?1 (3.0 V) in OLEDs, as well as a power conversion efficiency (PCE) value of 9.19% in OSCs are achieved using hybrid Ag@SiO2NP–AgNW films. These are the highest values reported to date for optoelectronic devices based on AgNW electrodes. This work provides a new design platform to fabricate high‐performance OODs, which can be further explored in various plasmonic and optoelectronic devices.  相似文献   

3.
This paper demonstrates the sectioning of chemically synthesized, single-crystalline microplates of gold with an ultramicrotome (nanoskiving) to produce single-crystalline nanowires; these nanowires act as low-loss surface plasmon resonators. This method produces collinearly aligned nanostructures with small, regular changes in dimension with each consecutive cross-section: a single microplate thus can produce a number of "quasi-copies" (delicately modulated variations) of a nanowire. The diamond knife cuts cleanly through microplates 35 mum in diameter and 100 nm thick without bending the resulting nanowire and cuts through the sharp edges of a crystal without deformation to generate nanoscale tips. This paper compares the influence of sharp tips and blunt tips on the resonator modes in these nanowires.  相似文献   

4.
The optimal geometries for reducing the radiative recombination lifetime and thus enhancing the quantum efficiency of III–V semiconductor nanowires by coupling them to plasmonic nanoparticles are established. The quantum efficiency enhancement factor due to coupling to plasmonic nanoparticles reduces as the initial quality of the nanowire increases. Significant quantum efficiency enhancement is observed for semiconductors only within about 15 nm from the nanoparticle. It is also identified that the modes responsible for resonant enhancement in the quantum efficiency of an emitter in the nanowire are geometric resonances of surface plasmon polariton modes supported at the nanowire/nanoparticle interface.  相似文献   

5.
Mock JJ  Hill RT  Tsai YJ  Chilkoti A  Smith DR 《Nano letters》2012,12(4):1757-1764
The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nanogap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme similar to that used to excite the surface plasmon resonance (SPR) of a thin metallic film; however, in the present system, the light is used to probe the highly sensitive distance-dependent LSPR of the gaps between NPs and film rather than the delocalized SPR of the film. We show that the SPR and LSPR spectral contributions can be readily distinguished, and we compare the sensitivities of both modes to displacements in the average gap between a collection of NPs and the gold film. The distance by which the NPs are suspended in solution above the gold film is fixed via a thin molecular spacer layer and can be further modulated by subjecting the NPs to a quasistatic electric field. The observed LSPR spectral shifts triggered by the applied voltage can be correlated with angstrom scale displacements of the NPs, suggesting the potential for chip-scale or flow-cell plasmonic nanoruler devices with extreme sensitivity.  相似文献   

6.
Fang Z  Fan L  Lin C  Zhang D  Meixner AJ  Zhu X 《Nano letters》2011,11(4):1676-1680
Ag nanowire with the receiving and transmitting Ag bow tie antenna pairs at its incident and emission ends was patterned on the SiO(2) substrate to realize an enhanced surface plasmon emission with a factor of 45 compared to the single Ag nanowire without antenna pairs. The receiving and transmitting bow tie antenna pairs enhanced the plasmon coupling and emission efficiencies of the Ag nanowire. And the maximum plasmon emission sensitively depended on the length of Ag nanowire, the arm length of bow tie antennas, and the incident angle of optical excitation. This enhanced plasmon emission was confirmed by finite-difference time-domain simulations and explored with analytical calculations using the impedance matching theory at optical frequency.  相似文献   

7.
As known, perturbing transverse modes arising from the waveguide properties of the interdigital transducers and reflectors can appear in SAW resonator filters. Usually, these undesired modes are suppressed by transducer apodization. This method has the disadvantage of increasing the transducer impedance. We propose a longitudinally coupled resonator filter, the basic elements of which are able to guide the two slowest waveguide modes alone, but to excite and receive the first mode only. The basic elements are arranged side by side forming the complete filter permitting coupling with each other weak enough to fulfill the filter specification. The suppression of undesired modes by the construction is demonstrated by transmission measurements  相似文献   

8.
We introduce a high-order time-domain discontinuous spectral element method for the study of the optical coupling by evanescent whispering gallery modes between two microcylinders, the building blocks of coupled resonator optical waveguide devices. By using the discontinuous spectral element method with a Dubiner orthogonal polynomial basis on triangles and a Legendre nodal orthogonal basis on quadrilaterals, we conduct a systematic study of the optical coupling by whispering gallery modes between two microcylinders and demonstrate the successful coupling between the microcylinders and also the dependence of such a coupling on the separation and the size variation of the microcylinders.  相似文献   

9.
We show that a nanoparticle can serve as an efficient antenna for coupling of visible light into propagating plasmons of an Ag nanowire. For long wires, the coupling is maximal for incident light polarized perpendicular to the nanowire. For sub-10-mum nanowires, the polarization corresponding to maximum emission from the ends of the nanowire was found to be strongly dependent on the nanowire geometry and position of the vicinal nanoparticle. This nanoparticle antenna-based approach offers a potential strategy for optimizing plasmon coupling into nanoscale metallic waveguides.  相似文献   

10.
Tsai CY  Lin JW  Wu CY  Lin PT  Lu TW  Lee PT 《Nano letters》2012,12(3):1648-1654
We investigate the optical properties of gold nanoring (NR) dimers in both simulation and experiment. The resonance peak wavelength of gold NR dimers is strongly dependent on the polarization direction and gap distance. As the gold NR particles approach each other, exponential red shift and slight blue shift of coupled bonding (CB) mode in gold NR dimers for longitudinal and transverse polarizations are obtained. In finite element method analysis, a very strong surface plasmon coupling in the gap region of gold NR dimers is observed, whose field intensity at the gap distance of 10 nm is enhanced 23% compared to that for gold nanodisk (ND) dimers with the same diameter. In addition, plasmonic dimer system exhibits a great improvement in the sensing performance. Near-field coupling in gold NR dimers causes exponential increase in sensitivity to refractive index of surrounding medium with decreasing the gap distance. Compared with coupled dipole mode in gold ND dimers, CB mode in gold NR dimers shows higher index sensitivity. This better index sensing performance is resulted form the additional electric field in inside region of NR and the larger field enhancement in the gap region owing to the stronger coupling of collective dipole plasmon resonances for CB mode. These results pave the way to design plasmonic nanostructures for practical applications that require coupled metallic nanoparticles with enhanced electric fields.  相似文献   

11.
A nanowire-based surface plasmon resonance (SPR) is investigated as a structure that offers improved sensor performance. The results calculated by rigorous coupled-wave analysis on a model using a hexanedithiol self-assembled monolayer (SAM) indicate that the resonant coupling between localized surface plasmons (LSPs) of nanowires affects the sensitivity enhancement substantially, while the LSP resonance in a single nanowire also contributes. SPR characteristics change significantly by applying a SAM, which can give rise to zero sensitivity for a given SAM. The results suggest that a properly designed nanowire-based SPR biosensor can enhance sensitivity by an order of magnitude with reasonable detection properties.  相似文献   

12.
Zhang S  Bao K  Halas NJ  Xu H  Nordlander P 《Nano letters》2011,11(4):1657-1663
Symmetry-breaking introduced by an adjacent semi-infinite dielectric can introduce coupling and hybridization of the plasmon modes of a metallic nanostructure. This effect is particularly large for entities with a large contact area adjacent to the dielectric. For a nanocube, a nearby dielectric mediates an interaction between bright dipolar and dark quadrupolar modes, resulting in bonding and antibonding hybridized modes. The Fano resonance that dominates the scattering spectrum arises from the interference of these modes. This analysis provides a strategy for optimizing the sensitivity of nanostructures, whether chemically synthesized or grown by deposition methods, as high-performance localized surface plasmon resonance sensors.  相似文献   

13.
The antenna-mediated coupling of light into Ag nanowire is investigated both in experiments and simulations. The coupling efficiency is strongly depended on the architecture of the metallic particles related to the Ag nanowire. Different incident angles of excitation laser are also tested for the maximum coupling effiecieny. The results demonstrate three-arm triangle antenna group fabricated at the incident end can effectively enhance the surface plasmon polariton (SPP) coupling and propagation. The SPP resonance and the Fabry-Perot cavity theory are used to explain the plasmon enhancement and propagation phenomena. The suggested structure can be served as an enhanced plasmonic waveguide for the nanophotonic and plasmonic circuits in the future.  相似文献   

14.
Coupling of plasmon resonances in metallic gap antennas is of interest for a wide range of applications due to the highly localized strong electric fields supported by these structures, and their high sensitivity to alterations of their structure, geometry, and environment. Morphological alterations of asymmetric nanoparticle dimer antennas with (sub)‐nanometer size gaps are assigned to changes of their optical response in correlative dark‐field spectroscopy and high‐resolution transmission electron microscopy (HR‐TEM) investigations. This multimodal approach to investigate individual dimer structures clearly demonstrates that the coupling of the plasmon modes, in addition to well‐known parameters such as the particle geometry and the gap size, is also affected by the relative alignment of both nanoparticles. The investigations corroborate that the alignment of the gap forming facets, and with that the gap area, is crucial for their scattering properties. The impact of a flat versus a rounded gap structure on the optical properties of equivalent dimers becomes stronger with decreasing gap size. These results hint at a higher confinement of the electric field in the gap and possibly a different onset of quantum transport effects for flat and rounded gap antennas in corresponding structures for very narrow gaps.  相似文献   

15.
Graphene plasmons are known to offer an unprecedented level of confinement and enhancement of electromagnetic field. They are hence amenable to interacting strongly with various other excitations (for example, phonons) in their surroundings and are an ideal platform to study the properties of hybrid optical modes. Conversely, the thermally induced motion of particles and quasiparticles can in turn interact with electronic degrees of freedom in graphene, including the collective plasmon modes via the Coulomb interaction, which opens up new pathways to manipulate and control the behavior of these modes. This study demonstrates tunable electrothermal control of coupling between graphene mid‐infrared (mid‐IR) plasmons and IR active optical phonons in silicon nitride. This study utilizes graphene nanoribbons functioning as both localized plasmonic resonators and local Joule heaters upon application of an external bias. In the latter role, they achieve up to ≈100 K of temperature variation within the device area. This study observes increased modal splitting of two plasmon–phonon polariton hybrid modes with temperature, which is a manifestation of increased plasmon–phonon coupling strength. Additionally, this study also reports on the existence of a thermally excited hybrid plasmon–phonon mode. This work can open the door for future optoelectronic devices such as electrically switchable graphene mid‐infrared plasmon sources.  相似文献   

16.
We demonstrate that the optical energy carried by a TE dielectric waveguide mode can be totally transferred into a transverse plasmon mode of a coupled metal nanoparticle chain. Experiments are performed at 1.5 μm. Mode coupling occurs through the evanescent field of the dielectric waveguide mode. Giant coupling effects are evidenced from record coupling lengths as short as ~560 nm. This result opens the way to nanometer scale devices based on localized plasmons in photonic integrated circuits.  相似文献   

17.
Wei H  Hao F  Huang Y  Wang W  Nordlander P  Xu H 《Nano letters》2008,8(8):2497-2502
We study the polarization dependence of surface-enhanced Raman scattering (SERS) in coupled gold nanoparticle-nanowire systems. The coupling between the continuous nanowire plasmons and the localized nanoparticle plasmons results in significant field enhancements and SERS enhancements comparable to those found in nanoparticle dimer junctions. The SERS intensity is maximal when the incident light is polarized across the particle and the wire, and the enhancement is remarkably insensitive to the detailed geometrical structures of the nanoparticles.  相似文献   

18.
Xu F  Horak P  Brambilla G 《Applied optics》2007,46(4):570-573
New 3D geometries of the optical nanowire microcoil resonator are suggested and investigated theoretically. The dependence of the Q factor on coupling parameters is calculated and compared for three different profiles. Results suggest that ultra-high-Q resonators can be fabricated more easily when the nanowire microcoil resonator has a biconical profile.  相似文献   

19.
Imaging localized plasmon modes in noble-metal nanoparticles is of fundamental importance for applications such as ultrasensitive molecular detection. Here, we demonstrate the combined use of optical dark-field microscopy (DFM), cathodoluminescence (CL), and electron energy-loss spectroscopy (EELS) to study localized surface plasmons on individual gold nanodecahedra. By exciting surface plasmons with either external light or an electron beam, we experimentally resolve a prominent dipole-active plasmon band in the far-field radiation acquired via DFM and CL, whereas EELS reveals an additional plasmon mode associated with a weak dipole moment. We present measured spectra and intensity maps of plasmon modes in individual nanodecahedra in excellent agreement with boundary-element method simulations, including the effect of the substrate. A simple tight-binding model is formulated to successfully explain the rich plasmon structure in these particles encompasing bright and dark modes, which we predict to be fully observable in less lossy silver decahedra. Our work provides useful insight into the complex nature of plasmon resonances in nanoparticles with pentagonal symmetry.  相似文献   

20.
Integrated CMOS-MEMS free-free beam resonator arrays operated in a standard two-port electrical configuration with low motional impedance and high power handling capability, centered at 10.5 MHz, have been demonstrated using the combination of pull-in gap reduction mechanism and mechanically coupled array design. The mechanical links (i.e., coupling elements) using short stubs connect each constituent resonator of an array to its adjacent ones at the high-velocity vibrating locations to accentuate the desired mode and reject all other spurious modes. A single second-mode free-free beam resonator with quality factor Q > 2200 and motional impedance R(m) < 150 kΩ has been used to achieve mechanically coupled resonator arrays in this work. In array design, a 9-resonator array has been experimentally characterized to have performance improvement of approximately 10× on motional impedance and power handling as compared with that of a single resonator. In addition, the two-port electrical configuration is much preferred over a one-port configuration because of its low-feedthrough and high design flexibility for future oscillator and filter implementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号