首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The objective of this paper is to investigate different diversity techniques for broadcast networks that will minimize the complexity and improve received SNR of broadcast systems. Resultant digital broadcast networks would require fewer transmitter sites and thus be more cost-effective and have less environmental impact. The techniques can be applied to DVB-T, DVB-H and DAB systems that use Orthogonal Frequency Division Multiplexing (OFDM). These are key radio broadcast network technologies, which are expected to complement emerging technologies such as WiMAX and future 4G networks for delivery of broadband content. Transmitter and receiver diversity technologies can increase the frequency and time selectivity of the resulting channel transfer function at the receiver. Diversity exploits the statistical nature of fading due to multipath and reduces the likelihood of deep fading by providing a diversity of transmission signals. Multiple signals are transmitted in such a way as to ensure that several signals reach the receiver each with uncorrelated fading. Transmit diversity is more practical than receive diversity due to the difficulty of locating two receive antennas far enough apart in a small mobile device. The schemes examined here comply with existing DVB standards and can be incorporated into existing systems without change. The diversity techniques introduced in this paper are applied to the DVB-H system. Bit error performance investigations were conducted by simulation for different DVB-H and diversity parameters  相似文献   

2.
In this paper transmitter antenna diversity for the downlink of a cellular system is proposed in conjunction with optimum anti-fading diversity. In spectrally efficienttransmitter antenna, frequency and time diversity schemes the information bit stream is divided into sub-streams and each sub-stream is transmitted over a different antenna, a different frequency, or a different time slot.The present work provides a fading resistant transmission scheme where a base station uses M1 antennas and M2 time slotsM=M1+M2. These transmissions are coordinated tomitigate the effects of multi-path Rayleigh fading and the mobilereceiver can recover the entire M-dimensional transmitted vector as longas the signal energy of at least one coordinate is large enough. TheSelective Transmitter Antenna Diversity (space diversity) scheme iscoordinated with new Orthonormal Complex Rotation Matrices(time diversity) to get the highest BER performance for low and medium signaltonoise ratio. Orthonormal Complex Rotation Matrices with variable and maximum peak toaverage amplitude ratio (PAR) are presented. The modulations considered in this workareQPSK, 8PSK and 16QAM.  相似文献   

3.
Transmitter diversity in the downlink of code-division multiple-access (CDMA) systems achieves similar performance gains to the mobile-station receiver diversity without the complexity of a mobile-station receiver antenna array. Pre-RAKE precoding at the transmitter can be employed to achieve the multipath diversity without the need of the RAKE receiver at the mobile station. We examine feasibility of several transmitter diversity techniques and precoding for the third-generation wideband CDMA (WCDMA) systems. In particular, selective transmit diversity, transmit adaptive array and space-time pre-RAKE (STPR) techniques are compared. It is demonstrated that the STPR method is the optimal method to combine antenna diversity and temporal precoding. This method achieves the gain of maximum ratio combining of all space and frequency diversity branches when perfect channel state information is available at the transmitter. We employ the long range fading prediction algorithm to enable transmitter diversity techniques for rapidly time varying multipath fading channels.  相似文献   

4.
Transmitter diversity is a technique that is effective for mitigating signal transmission degradation caused by multipath fading which is one of the most serious problems in land mobile radio. A frequency-offset transmitter diversity is proposed for a land mobile radio system that employs minimum-shift keying (MSK) and two-bit differential detection. It is shown that high transmission efficiency can be obtained in comparison with the other frequency-offset transmitter diversity. In addition, the diversity effect on the bit error rate (BER) performance is equivalent to that of postdetection equal gain combining diversity. The BER performance improvement was confirmed by the experimental test results.  相似文献   

5.
Transmitter diversity is an effective technique to improve wireless communication performance. In this paper, we investigate transmitter diversity using space-time coding for orthogonal frequency division multiplexing (OFDM) systems in high-speed wireless data applications. We develop channel parameter estimation approaches, which are crucial for the decoding of the space-time codes, and we derive the MSE bounds of the estimators. The overall receiver performance using such a transmitter diversity scheme is demonstrated by extensive computer simulations. For an OFDM system with two transmitter antennas and two receiver antennas with transmission efficiency as high as 1.475 bits/s/Hz, the required signal-to-noise ratio is only about 7 dB for a 1% bit error rate and 9 dB for a 10% word error rate assuming channels with two-ray, typical urban, and hilly terrain delay profiles, and a 40-Hz Doppler frequency. In summary, with the proposed channel estimator, combining OPDM with transmitter diversity using space-time coding is a promising technique for highly efficient data transmission over mobile wireless channels  相似文献   

6.
In orthogonal frequency-division multiple access (OFDMA), closely spaced multiple subcarriers are assigned to different users for parallel signal transmission. An interleaved subcarrier-assignment scheme is preferred because it provides maximum frequency diversity and increases the capacity in frequency-selective fading channels. The subcarriers are overlapping, but orthogonal to each other such that there is no intercarrier interference (ICI). Carrier-frequency offsets (CFOs) between the transmitter and the receiver destroy the orthogonality and introduces ICI, resulting in multiple-access interference. This paper exploits the inner structure of the signals for CFO estimation in the uplink of interleaved OFDMA systems. A new uplink signal model is presented, and an estimation algorithm based on the signal structure is proposed for estimating the CFOs of all users using only one OFDMA block. Diversity schemes are also presented to improve the estimation performance. Simulation results illustrate the high accuracy and efficiency of the proposed algorithm.  相似文献   

7.
In this paper, optimized transmit schemes for multiple-input multiple-output (MIMO) systems with simplified receivers are proposed for the downlink of high-speed wireless communication systems. In these systems, MIMO signal preprocessing is performed at the transmitter or base station with the receiver at the mobile station having a simplified structure that requires only limited signal processing. An important potential application for our transmit MIMO techniques is in the downlink of high-speed wireless communication systems with Vertical Bell Laboratories Layered Space-Time (V-BLAST) or a similar technique utilized in the uplink, creating a high-speed duplex system with a simplified mobile station transceiver structure. Two approaches are introduced and these depend on whether or not receive diversity is employed at the receiver. Both methods require that channel state information be available at the transmitter. In addition, some important associated issues such as peak-to-average power ratio requirements at the transmitter and robustness to downlink channel errors are also investigated and various solutions are proposed. Simulation results are provided and these show that performance improvement can be achieved when compared with other MIMO transmit schemes.  相似文献   

8.
由于发射分集技术可以大大提高系统的抗衰落性能,因此得到了广泛的研究和应用。该文提出了3种基于导频的发射分集正交频分复用(OFDM)系统的子空间幅度跟踪信道估计方法,并分析比较了其估计性能。利用信道传播时延慢变和衰落幅度快变的特点,通过对多径信道的时延子空间和衰落幅度的跟踪,可以部分消除信道估计过程中噪声的影响,大大提高信道估计精度。在信道阶数已知或使用相同秩估计方法的情况下,第3种方法的运算复杂度最低, 性能最好;第1种方法次之,性能最差;第2种方法由于需要进行DFT和IDFT,运算复杂度最高。仿真结果表明,3种子空间幅度跟踪信道估计方法在410-3 误码率时可以提高系统误码率性能1~2 dB左右。  相似文献   

9.
Transmitter diversity and down-link beamforming can be used in high-rate data wireless networks with orthogonal frequency division multiplexing (OFDM) for capacity improvement. We compare the performance of delay, permutation and space-time coding transmitter diversity for high-rate packet data wireless networks using OFDM modulation. For these systems, relatively high block error rates, such as 10%, are acceptable assuming the use of effective automatic retransmission request (ARQ). As an alternative, we also consider using the same number of transmitter antennas for down-link beamforming as we consider for transmitter diversity. The investigation indicates that delay transmitter diversity with quaternary phase-shift keying (QPSK) modulation and adaptive antenna arrays provides a good quality of service (QoS) with low retransmission probability, while space-time coding transmitter diversity provides high peak data rates. Down-link beamforming together with adaptive antenna arrays, however, provides a higher capacity than transmitter diversity for typical mobile environments  相似文献   

10.
Transmitter diversity wireless communication systems over Rayleigh fading channels using pilot symbol assisted modulation (PSAM) are studied. Unlike conventional transmitter diversity systems with PSAM that estimate the superimposed fading process, we are able to estimate each individual fading process corresponding to the multiple transmitters by using appropriately designed pilot symbol sequences. With such sequences, special coded modulation schemes can then be designed to access the diversity provided by the multiple transmitters without having to use an interleaver or expand the signal bandwidth. The code matrix notion is introduced for the coded modulation scheme, and its design criteria are also established. In addition to the reduction in receiver complexity, simulation results are compared to, and shown to be superior to, that of an intentional frequency offset system over a wide range of system parameters  相似文献   

11.
Sawahashi  M. Inukai  Y. 《Electronics letters》1992,28(24):2201-2202
Transmitter diversity, which employs a single transmit/receive antenna at the portable stations and two transmit/receive antennas at the base station, is experimentally investigated for a TDMA/TDD (time division duplex) mobile radio system. Experimental results show that transmitter diversity can significantly improve the BER (bit error rate) performance of the portable station, due to AWGN (additive white gaussian noise), delay spread, and CCI (cochannel interference) in Rayleigh fading environments.<>  相似文献   

12.
Transmitter precoding in synchronous multiuser communications   总被引:1,自引:0,他引:1  
A synchronous multiuser system operating in an additive white Gaussian noise channel, with or without multipath fading, is considered. It is shown that when either a conventional single user receiver or the RAKE receiver is employed, both multiple access and intersymbol interference can be eliminated by means of a suitable transmitter precoding scheme. Transmitter precoding represents a linear transformation of transmitted signals, such that the mean squared errors at all receivers are minimized. Precoding, with both conventional single user receiver and with the RAKE receiver, results in near-far resistant performance and outperforms considerably the respective schemes without precoding. The crucial assumption, in the multipath case, is that the transmitter knows the multipath characteristics of all channels and that channel dynamics are sufficiently slow so that multipath profiles remain essentially constant over the block of precoded bits  相似文献   

13.
Transmit diversity techniques have received a lot of attention recently, and open-loop and closed-loop downlink transmit diversity modes for two transmit antennae have been included into universal terrestrial radio access (UTRA) frequency division duplex (FDD) specification. Closed-loop modes provide larger system capacity than open-loop modes, but they need additional side information of the downlink channel in the transmitter. In FDD systems this requires a separate feedback channel. Quantization of channel state information (CSI) in closed-loop transmit diversity schemes decreases the performance when compared to a closed-loop system where the transmitter has access to complete CSI. In this paper, we analyze the effect of quantization of CSI and deduce approximate capacity formulae for closed-loop transmit diversity schemes that are generalizations of the closed-loop schemes included in UTRA FDD specification. Moreover, we calculate approximation error and show by simulations that our approximation is tight for flat Rayleigh fading environments with and without fast transmit power control.  相似文献   

14.
Transmitter designs based on partial channel state information (CSI) have become increasingly attractive in multi-antenna wireless communication systems. To capture partial CSI statistics at the transmitter, we rely on a channel amplitude information (CAI) model, based on which we aim for maximizing the random channel's average mutual information. Due to the high computational complexity required for such optimal transmissions, we resort to reduced complexity practical schemes and derive necessary and sufficient conditions for these alternatives to achieve maximal average mutual information  相似文献   

15.
An error probability analysis performed for an M-ary orthogonal frequency-shift keying (MFSK) communication system employing fast frequency-hopped (FFH) spread-spectrum waveforms transmitted over a frequency-nonselective, slowly Rician fading channel with partial band interference is discussed. Diversity is obtained using multiple hops per data bit. Noise-normalization combining is employed by the system receiver to minimize partial-band interference effects. The partial-band interference is modeled as a Gaussian process. Thermal noise is also included in the analysis. Forward error correction coding is applied using convolutional codes and Reed-Solomon codes. Diversity is found to dramatically reduce the degradation of the noise-normalization receiver caused by partial-band interference regardless of the strength of the direct signal component. Diversity offers significant performance improvement when channel fading is strong, and performance improvement is obtained for high modulation orders (M>2). Receiver performance is improved when diversity, higher modulation orders, and coding are combined  相似文献   

16.
Multiple-input multiple-output (MIMO) wireless systems are of interest due to their ability to provide substantial gains in capacity and quality. The paper proposes equal gain transmission (EGT) to provide diversity advantage in MIMO systems experiencing Rayleigh fading. The applications of EGT with selection diversity combining, equal gain combining, and maximum ratio combining are addressed. It is proven that systems using EGT with any of these combining schemes achieve full diversity order when transmitting over a memoryless, flat-fading Rayleigh matrix channel with independent entries. Since, in practice, full channel knowledge at the transmitter is difficult to realize, a quantized version of EGT is proposed. An algorithm to construct a beamforming vector codebook that guarantees full diversity order is presented. Monte-Carlo simulation comparisons with various beamforming and combining systems illustrate the performance as a function of quantization.  相似文献   

17.
In this letter, the performance of an indoor optical wireless spot-diffusing system using various multibeam transmitter configurations, in association with direction diversity and combining techniques, is assessed and compared under the impact of multipath dispersion and ambient light noise through theoretical analysis and computer simulation. Computer simulation for three different multibeam transmitter configurations and a conventional diffuse transmitter is carried out. Diversity receiver and wide field-of-view (FOV) receiver configurations are evaluated in conjunction with the proposed configurations. For the diversity-detection case, a receiver comprising an array of narrow FOV detectors (three and seven segments) oriented in different directions is used to maximize the collected signals and minimize noise. A novel line-strip multibeam system (LSMS) is investigated with single and diversity receiver configurations, and is compared with other spot-diffusing methods. Combining schemes, including selection combining, maximum ratio combining, and equal gain combining are employed for the presented configurations. Our results indicate that the performance improvement obtained through the use of LSMS with a three-direction diversity receiver is about 20 dB signal-to-noise ratio enhancement over the conventional diffuse system, and 26 dB when combining techniques are used. Root mean square delay-spread performance for the proposed configurations, at different positions on the communication floor, are also evaluated and compared.  相似文献   

18.
In realistic channel environments the performance of space–time coded multiple-input multiple output (MIMO) systems is significantly reduced due to non-ideal antenna placement and non-isotropic scattering. In this paper, by exploiting the spatial dimension of a MIMO channel we introduce the novel idea of linear spatial precoding (or power-loading) based on fixed and known parameters of MIMO channels to ameliorate the effects of non-ideal antenna placement on the performance of coherent (channel is known at the receiver) and non-coherent (channel is un-known at the receiver) space–time codes. Antenna spacing and antenna placement (geometry) are considered as fixed parameters of MIMO channels, which are readily known at the transmitter. With this design, the precoder is fixed for fixed antenna placement and the transmitter does not require any feedback of channel state information (partial or full) from the receiver. We also derive precoding schemes to exploit non-isotropic scattering distribution parameters of the scattering channel to improve the performance of space–time codes applied on MIMO systems. However, these schemes require the receiver to estimate the non-isotropic parameters and feed them back to the transmitter. Closed form solutions for precoding schemes are presented for systems with up to three receive antennas. A generalized method is proposed for more than three receive antennas.  相似文献   

19.
20.
The capacity advantage of multiple input-multiple output (MIMO) channels lays in the decomposition of the channel into several spatial sub-channels. Knowledge of the channel at the transmitter can further increase the system capacity. This effect has been theoretically demonstrated. Here we illustrate the potential of channel state information (CSI) at the transmitter using actual channel measurements of a system with 4 transmitters and 4 receivers in an indoor environment, under line-of-sight and non line-of-sight conditions, considering both infinite and finite allowable modulation sizes. We show that CSI at the transmitter is more beneficial in the case of low signal to noise ratio and in cases where the channel richness is limited. In terms of achievable spectral efficiency, 60% of the theoretical capacity can be obtained without advanced coding techniques, as long as eigen mode transmission is used, and the performance is similar for all power and rate allocation schemes that we investigate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号