首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a modified form of the blister test, where the adhesive layer was between the substrate and a massive base, instead of as a continuous sheet on top of the substrate, we determined the interfacial fracture energy F for a series of interfaces where a brittle material (ice) was adhering to various substrates. Fracture energies obtained were compared with work of adhesion values measured for water on the same substrates. Fracture energy, which contains within it both a reversible contribution due to intermolecular interactions across the interface (work of adhesion) and an irreversible contribution due to collective dissipative processes, was found to rise rapidly with modest increases in work of adhesion. The observed relation suggests that the irreversible contribution to fracture energy is influenced strongly by the intermolecular interactions at the interface.  相似文献   

2.
This work reports adhesion behaviour of polyethylene on paper, and deals with the surface energy of the materials involved in the manufacture of these composites, and its influence on the adhesion strength, at constant roughness, for the paper substrates. The surface energy of different papers treated with various sizing agents was determined by measuring contact angles according to the Owens-Wendt method. The peeling energy was shown to follow a linear relationship versus the reversible energy of adhesion. This result is explained by the fact that rupture takes place at the interface and that the size of the defect at the interface depends on the spreading coefficient. Corona treatment, applied to strongly sized papers before making the composites, restored the adhesion strength to its original range of values, again demonstrating the thermodynamic character of adhesion in thermoplastic-paper composites.  相似文献   

3.
—Mechanical effects in the peel strength of a thin film have been studied both experimentally and theoretically. It has been found that the adhesion strength measured by the peel test is a practical adhesion (an engineering strength per unit width) and does not represent the true interface adhesion strength. The measured value may represent a multiplication of the true interface adhesion and other work expended in the plastic deformation of the thin film. The contribution of the latter to the peel strength is found to be, sometimes, of the order of 100 times higher than the former. It is found that the major controlling factors in the peel strength are the thickness, Young's modulus, the yield strength, the strain hardening coefficient of the film, and the compliance of the substrate as well as the interface adhesion strength. Even though the true interface adhesion strength is the same, a higher peel strength is obtained if the film is thinner or more ductile under the test conditions reported in this paper. The same effect can be obtained if the substrate is thinner in the case where the substrate is a soft elastic material, or if the substrate is thicker in the case where the substrate is a rigid material.  相似文献   

4.
The adhesion strength between a copper (Cu) thin film and a polyimide [pyromellitic dianhydride-oxydianiline (PMDA-ODA)] substrate is reduced by heat treatment at 150°C in air. In this work, we determined the changes in adhesion strength between Cu films and polyimide substrates using Auger electron spectroscopy (AES), attenuated total reflection Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The analysis showed that the weak boundary layer (WBL) shifted towards the Cu interface as the heat treatment time was increased. To confirm this shift, we looked at two other polyimide substrates: biphenyl dianhydride-p-phenylene diamine (BPDA-PDA) and biphenyl dianhydride-oxydianiline (BPDA-ODA). Comparing the adhesion strength for the Cu thin film, the adhesion strength was high for the Cu/PMDA-ODA and Cu/BPDA-ODA laminates, but very low for the Cu/BPDA-PDA laminate. One of the possible reasons for this behavior could be that the ether moiety between the two benzene rings in ODA is related to the adhesion between a Cu film and an 02-plasma-treated polyimide (PI) substrate. The relationship between the adhesion strength and chemical bonding states is also discussed. We conclude that a Cu thin film sputtered onto a PI substrate is apt to peel at the oxidized interface, due to the heat treatment.  相似文献   

5.
An analysis of the notched coating adhesion (NCA) test is presented. This simple adhesion test method is appropriate for measuring the interfacial fracture toughness of some classes of coatings and open-faced adhesive bonds. The NCA specimen consists of a single substrate coated with a thin layer of adhesive. The coating is notched to sever the coating and induce sharp interfacial debonds, and the specimen is then loaded in tension. The substrate strain at which coating debonding occurs is recorded and used to determine the critical strain energy release rate. Yielding of the substrate is permitted, and does not significantly affect the calculation of the strain energy release rate. Analytical and finite element analysis are used to quantify the available strain energy release rate for both steady state and laterally-constrained cases. The available strain energy release rate is shown to be quite insensitive to the initial debond length. The specimen geometry results in a mode mix which causes the adhesive to debond along the interface.  相似文献   

6.
The adhesion of photocured resins to ceramic substrates has been investigated using a variety of surface analytical techniques. Work has been aimed at establishing the physical and chemical interactions between resin and substrate in the interphase region and the effect of environmental exposure on these Analysis was aided by use of specially-designed, in-situ fracture facilities attached by an X-ray photoelectron spectrometer. Specific attention was focused on identification of localised regions of varying chemical composition in adhesive and adherend by imaging spectroscopies (imaging XPS and ToF SIMS imaging) and the study of the significance of such heterogeneities on adhesion and subsequent failure mechanisms.  相似文献   

7.
Diamond films were chemically vapor deposited (CVD) on titanium, tungsten, molybdenum, copper and aluminum oxide substrates. In these studies, the interface formed between diamond and the substrate was exposed by mechanically deforming the metal substrate or diamond film to cause film delamination. The observed degree of adhesion for these interfaces can be ranked in the order: Ti » Al2O3 (thin films) > Cu > W » Mo. For highly adherent films, delamination procedures were carried out under controlled conditions in order to preserve the integrity of the interfacial species. The exposed interfaces were characterized by X-ray photoelectron spectroscopy (XPS), scanning Auger microscopy (SAM), scanning electron microscopy (SEM) and Raman microprobe spectroscopy. We find that substantial interfacial reaction layers exist at all interfaces except in the diamond-copper system and are composed of both oxides and carbides of the native substrate. Variations in the relative concentration of these species and the distribution throughout the reaction layer also were observed for the different substrates. We believe that both the chemical composition and morphology of the interface influence the adhesion properties of the diamond coating. Correlated investigations of the interfacial surfaces reveal that fracture of the diamond-metal interface occurs discretely at the diamond nucleation plane or within a reaction layer near the diamond interface. We discuss each of these findings in light of qualitative observations of adhesion and suggest avenues for improving the adhesion of diamond films.  相似文献   

8.
The adhesion of photocured resins to ceramic substrates has been investigated using a variety of surface analytical techniques. Work has been aimed at establishing the physical and chemical interactions between resin and substrate in the interphase region and the effect of environmental exposure on these Analysis was aided by use of specially-designed, in-situ fracture facilities attached by an X-ray photoelectron spectrometer. Specific attention was focused on identification of localised regions of varying chemical composition in adhesive and adherend by imaging spectroscopies (imaging XPS and ToF SIMS imaging) and the study of the significance of such heterogeneities on adhesion and subsequent failure mechanisms.  相似文献   

9.
This paper deals with the analysis of peel energy of assemblies measured in different environments, i.e. in air and in the presence of liquids, and constitutes a brief review of the work of Professor Schultz' team in this domain. It is shown how such measurements can lead to a better knowledge of the nature as well as of the magnitude of fundamental interactions established at the interface between two solids. Earlier experiments have shown that peel energy can be expressed as a product of three terms corresponding, respectively, to the reversible energy of interfacial adhesion, the hysteretic losses of the bulk materials and the molecular dissipation near the crack front during peeling. This approach is well-verified when only physical interactions (van der Waals) are involved at the interface. However, more complex cases correspond to systems where specific interactions are also established between both materials, in particular acid-base interactions and creation of chemical bonds. In both cases, peel measurements in liquid media can lead to the determination of fundamental parameters, such as the interfacial density of specific interactions at the interface and the acid-base or chemical components of the work of adhesion. Finally, the effect of interdiffusion phenomena on peel energies can also be investigated in the case of elastomer/elastomer assemblies.  相似文献   

10.
Adhesion between various polymer substrates and plasma films, which had been prepared from either tetramethylsilane or tetramethyltin by glow discharge polymerization and deposited on the surface of the polymer, was evaluated by the Scotch tape test and by lap-shear strength. It was found that the plasma films exhibited fairly good adhesion to the polymer substrates (with the exception of polypropylene). The position where failure occurred was determined by X-ray fluorescence analysis, scanning electron microscopy and energy diffractive X-ray analysis. This position was at an inner layer of the plasma film (cohesive failure of plasma film), within the polymer substrate (material failure of polymer) or at the interface between polymer substrate and plasma film (adhesive failure) depending upon the polymer substrate. These results indicate an important aspect of durability of surface modification by glow discharge polymerization.  相似文献   

11.
表面改性芳纶复合材料的界面粘结与界面断裂韧性   总被引:3,自引:1,他引:3  
本文以表面改性芳纶和改性BMI型树脂组成复合材料体系,研究芳纶表面改性其复合材料界面粘结与界面断裂韧性的影响。  相似文献   

12.
A “blister test” technique has been used to determine the fracture surface energy of a range of adhesive joints formed using a polyurethane adhesive and a range of solid substrates. For each adhesive pair examined the work of adhesion was calculated from the contact angles formed by liquids for which the polar and dispersion force components of the surface tension are known. For each adhesive pair, the solubility parameter of adhesive and substrate were determined by swelling measurements in a range of liquids. Although cohesive failure of the joints was observed for some of the pairs for which the solubility parameters were matched, this was not true for all such pairs and an explanation of this behaviour has been sought in a new calculation of the volume interaction component of the molecular interaction parameters.  相似文献   

13.
The adhesion of Alcaligenes denitrificans to several polymeric materials was investigated. As the nature of the surfaces of the micro-organisms and the substrate materials is an important factor in the adhesion process, characteristics such as the electrokinetic potential and hydrophobicity were also determined and correlated with the capacity of bacterial cells to adhere to solid surfaces. The substrates used were high-density polyethylene (HDPE), polypropylene (PP), poly(vinyl chloride) (PVC), and poly(methyl methacrylate) (PMMA). The electrokinetic potential of the cells and the substrates was determined by measurements of electrophoretic mobility and the hydrophobicity was determined by contact angle measurements. All the substrates studied as well as the bacterial strain have a negative zeta potential, which means that adhesion is not mediated by electrostatic interactions. As far as hydrophobicity is concerned, PP is the most hydrophobic material, PMMA is the least hydrophobic, whereas HDPE and PVC present an intermediate behavior. As bacteria cells are hydrophilic, adhesion is favored to PP; therefore, this substrate material seems to be the one that promotes a stronger adhesion and the development of the most stable biofilm for use as a biomass carrier in denitrifying inverse fluidized bed reactors. This was confirmed by the results of adhesion tests. In this way, adhesion seems to be dominated by hydrophobic interactions.  相似文献   

14.
Peel strength between a copper (Cu) thin film and a polyimide (pyromellitic dianhydride-oxydianiline, or PMDA-ODA) substrate is reduced by heat treatment at 150°C in air. In this work, we investigated the peel strength, the morphology of the interface between Cu films and polyimide substrates using optical microscopy and electron microscopy, and chemical change of the interface using Auger electron spectroscopy (AES) and micro X-ray photoelectron spectroscopy (XPS). The analysis showed that CuO “lumps” were present on the peeled surface of PMDA-ODA after heat treatment at 150°C in air. The peeled surfaces of other polyimide substrates were also analyzed: biphenyl dianhydride-para phenylene diamine (BPDA-PDA) and biphenyl dianhydride-oxydianiline (BPDA-ODA). CuO lumps were present on the peeled surface of BPDA-ODA after the heat treatment, but not that of BPDA-PDA. Compared with the adhesion strength for the Cu thin film, the adhesion strength was high for the Cu/PMDA-ODA and Cu/BPDA-ODA laminates, but the adhesion strength was very low for the Cu/BPDA-PDA laminate. This low strength is the reason that CuO lumps were not detected on the peeled surface of the BPDA-PDA substrate. These CuO lumps were related to the adhesion degradation of the Cu/polyimide laminates after the heat treatment.  相似文献   

15.
Plasma-sprayed NiCrAl/Al2O3–13wt.%TiO2 coatings (AT13) deposited on mild steel substrate were annealed with varying temperatures in air. The adhesion of the coating was evaluated by tensile adhesive strength test. The microstructure and the fracture mechanism were studied using optical microscopy, X-ray diffraction, and scanning electron spectroscopy/energy dispersive spectroscopy. It was found that the tensile bond strength of the coatings increased with increasing of annealing temperature at first and then decreased with increasing of annealing temperature further. The as-sprayed coating fractured at the interfaces of substrate/bond layer and bond layer/ceramic coating with a brittle–ductile mixed fracture. The measured strength expressed the adhesive strength and internal adhesive strength of the coating. The failure of the coating annealed at 300, 400, and 500 °C took place at the interface of substrate/bond layer and had a mixed fracture surface of transgranular cleavage fracture and localized ductile fracture. The strength obtained is the adhesive strength between the coating and the steel substrate. The coating annealed at 400 °C had a maximum strength of 42.9 MPa. When the temperature is above 600 °C, the bonding strength would be damaged. Therefore, there is a proper annealing temperature which can significantly improve the bond strength of the coating.  相似文献   

16.
The application of Griffith's energy balance argument to cracks at adhesive interfaces is studied. Adhesive interfaces are generally brittle, representing the simplest form of fracture mechanics geometry because cracks are constrained to travel along the interface, giving a defined crack path which eases analysis. Experimentally, such cracks may be propagated along the interface between optically smooth rubber pieces, and measured through the transparent material. The development of adhesive fracture test-pieces since Griffith's time reveals difficulties in his reasoning, and allows improved understanding of the energy balance method. The most important conclusion is that stress does not normally enter the cracking criterion. It is demonstrated experimentally that stress may remain constant while the crack criterion changes. The strength of an adhesive interface is shown to be a meaningless parameter; instead, the work of adhesion, or adhesive energy, which is the work of adhesion together with energy losses, should be used to define the behaviour of cracks at interfaces.  相似文献   

17.
In real-world applications of electrostatic adhesion technology, the electrostatic adhesion force decreases when the electrode panel slides or rotates relative to the attachment substrate due to an external disturbance. However, little work has been done to study this phenomenon. This paper presents a model and analysis method to evaluate the electrostatic adhesion performance considering a rotary disturbance between the electrode panel and the attachment substrate. First, dynamic variations of the electric fields for any point on the attachment substrate are analysed. Then the decrease in the electrostatic adhesion force is explained based on the analysis results and our previous work. The analysis results and explanations are experimentally validated on three different attachment substrates. The fundamental cause of the decrease in adhesion force is the loss of the lined layer polarization due to the rotary disturbance. The results provide a good explanation to the phenomenon and make the existing electrostatic adhesion theory more self-consistent.  相似文献   

18.
Physico-chemical changes at the interface between two polymer surfaces have a significant effect on adhesion and the molecular level processes associated with it. Although rheo-photoacoustic (RPA) Fourier transform infrared (FT-IR) spectroscopy was developed to establish the origin of polymer-polymer interfacial interactions, no correlations were made between the spectroscopic data and the work of adhesion. In this study, we attempt to provide a relationship between the vibrational energy changes in the C-H stretching region in polyethylene, induced by the interfacial stresses resulting from elongations of the polyethylene-polydimethylsiloxane double-layer system, and the work of adhesion. Stresses induced in the interfacial regions allow a correlation between the film thickness and the vibrational energy changes in the symmetric C-Η bands.  相似文献   

19.
Tensile tests in a scanning electron microscope have been performed to study the mechanical stability of different film/substrate systems consisting of films of Si3N4 and SiO2 :4.5 wt% P deposited on Al substrates. Successive stages of crack development were observed: transverse through-thickness cracking of the film precedes its loss of adhesion and buckling, induced by the transverse contraction of the substrate. It was observed that the presence of a thermally grown Al2O3 interlayer improved the adhesion of the films by delaying the de-adhesion process. The influence of roughness on the interfacial strength was analysed from the observation of the de-adhesion of a SiO2 :4.5 wt% P film deposited on a scratched Al substrate. The critical strain for the through-thickness cracking of each film was calculated. Then the multiple film cracking was analysed through the evolution of the crack density with the longitudinal strain. Finally, by using the point at which the film de-adhered, an interfacial fracture energy was calculated for each system.  相似文献   

20.
This article reviews the theoretical principles of macromolecular design of interfaces between glassy polymers as well as those between rigid substrates and elastomers for maximizing adhesion and fracture performance of bonded assemblies. According to contemporary theories, macromolecular "connector molecules" grafted onto solid polymer surfaces effectively improve adhesion and fracture performance of interfaces between polymers by improving the interactions with adjacent materials through one or both of the following mechanisms: (1) interpenetration into adjacent polymeric phase, and (2) chemical reaction/crosslinking with the adjacent material.It is shown that the effectiveness of the interface reinforcement by surface-grafted connector molecules depends on the following factors: surface density of grafted molecules, length of individual chains of grafted molecules, and optimum surface density in relation to the length of connector molecules. The influence of the above-mentioned physico-chemical parameters of molecular brushes on the interphase-interface reinforcement is discussed and quantified by contemporary theories. Also, the optimum conditions for maximum adhesion enhancement are specified and verified by a range of experimental examples.Part II of this article demonstrates a novel and relatively simple, industry-feasible technology for surface grafting connector molecules and engineering of interface/interphase systems, which is discussed in detail and supported by a range of experimental examples. It is shown, in agreement with contemporary theories, that the use of chemically attached graft chemicals of controlled spatial geometry and chemical functionality enables a significant increase in the strength and fracture energy of the interphase, to the point of cohesive fracture of the substrate, or that of an adjacent medium such as adhesive, elastomer, or other material. This occurs even after prolonged exposure of investigated systems to adverse environments such as hot water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号