首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
We show in this note that the equation αx1 + #x22EF; +αxp?ACβy1 + α +βyq where + is an AC operator and αx stands for x+...+x (α times), has exactly $$\left( { - 1} \right)^{p + q} \sum\limits_{i = 0}^p {\sum\limits_{j = 0}^q {\left( { - 1} \right)^{1 + 1} \left( {\begin{array}{*{20}c} p \\ i \\ \end{array} } \right)\left( {\begin{array}{*{20}c} q \\ j \\ \end{array} } \right)} 2^{\left( {\alpha + \begin{array}{*{20}c} {j - 1} \\ \alpha \\ \end{array} } \right)\left( {\beta + \begin{array}{*{20}c} {i - 1} \\ \beta \\ \end{array} } \right)} } $$ minimal unifiers if gcd(α, β)=1.  相似文献   

2.
H. H. Gonska  J. Meier 《Calcolo》1984,21(4):317-335
In 1972 D. D. Stancu introduced a generalization \(L_{mp} ^{< \alpha \beta \gamma > }\) of the classical Bernstein operators given by the formula $$L_{mp}< \alpha \beta \gamma > (f,x) = \sum\limits_{k = 0}^{m + p} {\left( {\begin{array}{*{20}c} {m + p} \\ k \\ \end{array} } \right)} \frac{{x^{(k, - \alpha )} \cdot (1 - x)^{(m + p - k, - \alpha )} }}{{1^{(m + p, - \alpha )} }}f\left( {\frac{{k + \beta }}{{m + \gamma }}} \right)$$ . Special cases of these operators had been investigated before by quite a number of authors and have been under investigation since then. The aim of the present paper is to prove general results for all positiveL mp <αβγ> 's as far as direct theorems involving different kinds of moduli of continuity are concerned. When applied to special cases considered previously, all our corollaries of the general theorems will be as good as or yield improvements of the known results. All estimates involving the second order modulus of continuity are new.  相似文献   

3.
Dr. R. Haverkamp 《Computing》1984,32(4):343-355
Letp n denote the polynomial of degreen or less that interpolates a given smooth functionf at the ?eby?ev nodest j n =cos(jπ/n), 0≤jn, and let ‖·‖ be the maximum norm inC[?1, 1]. It is proved that fork-th derivatives (2≤kn) estimates of the following type hold $$\parallel f^{(k)} - p_n^{(k)} \parallel \leqslant c_k n^{k - 1} \inf \{ \parallel f^{(k)} - q\parallel :q \in \Pi _{n - k} \} .$$ In this relationc k only depends onk andΠ n?k denotes the space of polynomials up to degreen?k.  相似文献   

4.
In this paper we study quadrature formulas of the form $$\int\limits_{ - 1}^1 {(1 - x)^a (1 + x)^\beta f(x)dx = \sum\limits_{i = 0}^{r - 1} {[A_i f^{(i)} ( - 1) + B_i f^{(i)} (1)] + K_n (\alpha ,\beta ;r)\sum\limits_{i = 1}^n {f(x_{n,i} ),} } } $$ (α>?1, β>?1), with realA i ,B i ,K n and real nodesx n,i in (?1,1), valid for prolynomials of degree ≤2n+2r?1. In the first part we prove that there is validity for polynomials exactly of degree2n+2r?1 if and only if α=β=?1/2 andr=0 orr=1. In the second part we consider the problem of the existence of the formula $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} f(x)dx = A_n f( - 1) + B_n f(1) + C\sum\limits_{i = 1}^n {f(x_{n,i} )} }$$ for polynomials of degree ≤n+2. Some numerical results are given when λ=1/2.  相似文献   

5.
In this paper we study quadrature formulas of the types (1) $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - 1/2} f(x)dx = C_n^{ (\lambda )} \sum\limits_{i = 1}^n f (x_{n,i} ) + R_n \left[ f \right]} ,$$ (2) $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - 1/2} f(x)dx = A_n^{ (\lambda )} \left[ {f\left( { - 1} \right) + f\left( 1 \right)} \right] + K_n^{ (\lambda )} \sum\limits_{i = 1}^n f (\bar x_{n,i} ) + \bar R_n \left[ f \right]} ,$$ with 0<λ<1, and we obtain inequalities for the degreeN of their polynomial exactness. By using such inequalities, the non-existence of (1), with λ=1/2,N=n+1 ifn is even andN=n ifn is odd, is directly proved forn=8 andn≥10. For the same value λ=1/2 andN=n+3 ifn is evenN=n+2 ifn is odd, the formula (2) does not exist forn≥12. Some intermediary results regarding the first zero and the corresponding Christoffel number of ultraspherical polynomialP n (λ) (x) are also obtained.  相似文献   

6.
L. Rebolia 《Calcolo》1973,10(3-4):245-256
The coefficientsA hi and the nodesx mi for «closed” Gaussian-type quadrature formulae $$\int\limits_{ - 1}^1 {f(x)dx = \sum\limits_{h = 0}^{2_8 } {\sum\limits_{i = 0}^{m + 1} {A_{hi} f^{(h)} (x_{mi} ) + R\left[ {f(x)} \right]} } } $$ withx m0 =?1,x m, m+1 =1 andR[f(x)]=0 iff(x) is a polinomial of degree at most2m(s+1)+2(2s+1)?1, have been tabulated for the cases: $$\left\{ \begin{gathered} s = 1,2 \hfill \\ m = 2,3,4,5 \hfill \\ \end{gathered} \right.$$ .  相似文献   

7.
J. Rokne  T. Wu 《Computing》1983,30(3):201-211
The centered form for real rational functions suggested by R. E. Moore [6] was extended to complex polynomials over circular complex domains in [7]. Here it is shown that the inclusion chain $$\begin{gathered} circular complex centered form evaluation \subseteq \hfill \\ Horner scheme \subseteq \hfill \\ power sum evaluation \hfill \\ \end{gathered} $$ is valid for all complex polynomials and all circular domains.  相似文献   

8.
LetK be a field and letL ∈ K n × n [z] be nonsingular. The matrixL can be decomposed as \(L(z) = \hat Q(z)(Rz + S)\hat P(z)\) so that the finite and (suitably defined) infinite elementary divisors ofL are the same as those ofRz + S, and \(\hat Q(z)\) and \(\hat P(z)^T\) are polynomial matrices which have a constant right inverse. If $$Rz + S = \left( {\begin{array}{*{20}c} {zI - A} & 0 \\ 0 & {I - zN} \\ \end{array} } \right)$$ andK is algebraically closed, then the columns of \(\hat Q\) and \(\hat P^T\) consist of eigenvectors and generalized eigenvectors of shift operators associated withL.  相似文献   

9.
A. M. Urbani 《Calcolo》1976,13(4):369-376
In this paper a procedure for the acceleration of the convergence is given. It allows the doubling of the order of the multistep methods for the numerical solution of the systems of ordinary differential equations: $$Y' = F(x,Y); Y_0 = Y(x_0 ) \begin{array}{*{20}c} x \\ {x_0 } \\ \end{array} \in [a,b]$$ whereY andF(x,Y) aret-vectors.  相似文献   

10.
F. Costabile  A. Varano 《Calcolo》1981,18(4):371-382
In this paper a detailed study of the convergence and stability of a numerical method for the differential problem $$\left\{ \begin{gathered} y'' = f(x,y) \hfill \\ y(x_0 ) = y_0 \hfill \\ y'(x_0 ) = y_0 ^\prime \hfill \\ \end{gathered} \right.$$ has carried out and its truncation error estimated. Some numerical experiments are described.  相似文献   

11.
C. K. Cheng  T. C. Hu 《Algorithmica》1992,8(1-6):233-249
In many applications, we need to find a minimum cost partition of a network separating a given pair of nodes. A classical example is the Max-Flow Min-Cut Theorem, where the cost of the partition is defined to be the sum of capacities of arcs connecting the two parts. Other similar concepts such as minimum weighted sparsest cut and flux cut have also been introduced. There is always a cost associated with a cut, and we always seek the min-cost cut separating a given pair of nodes. A natural generalization from the separation of a given pair is to find all minimum cost cuts separating all \(\left( {\begin{array}{*{20}c} n \\ 2 \\ \end{array} } \right)\) pairs of nodes, with arbitrary costs associated with all 2n?1 — 1 cuts. In the present paper, we show thatn — 1 minimum cost cuts are always sufficient to separate all \(\left( {\begin{array}{*{20}c} n \\ 2 \\ \end{array} } \right)\) pairs of nodes. A further generalization is to considerk-way partitions rather than two-way partitions. An interesting relationship exists betweenk-way partitions, the multicommodity flow problem, and the minimum weighted sparsest cut. Namely, if the staturated arcs in a multicommodity flow problem form ak-way partition (k ≤ 4), then thek-way partition contains a two-way partition. This two-way partition is the minimum weight sparsest cut.  相似文献   

12.
F. Costabile 《Calcolo》1974,11(2):191-200
For the Tschebyscheff quadrature formula: $$\int\limits_{ - 1}^1 {\left( {1 - x^2 } \right)^{\lambda - 1/2} f(x) dx} = K_n \sum\limits_{k = 1}^n {f(x_{n,k} )} + R_n (f), \lambda > 0$$ it is shown that the degre,N, of exactness is bounded by: $$N \leqslant C(\lambda )n^{1/(2\lambda + 1)} $$ whereC(λ) is a convenient function of λ. For λ=1 the complete solution of Tschebyscheff's problem is given.  相似文献   

13.
F. Costabile 《Calcolo》1973,10(2):101-116
For the numerical integration of the problem with initial value $$y' = f(x,y),y(x_0 ) = y_0 ,\begin{array}{*{20}c} {\begin{array}{*{20}c} x \\ {x_0 } \\ \end{array} \in [a,b],} \\ \end{array} $$ the pseudo R. K. methods of second kind are taken again and approximations are drawn, that in particular casef(x, y)≡f(x) are reduced to quadrature formulae of Radau and Lobatto. The limits of the trancation's error and the stability's intervals of the pseudo R. K. methods of the first and second species with the approximations of the same order of R. K. are determined and compared. At the end of that, a numerical example is taken.  相似文献   

14.
O. G. Mancino 《Calcolo》1970,7(3-4):275-287
LetX be a point of the realn-dimensional Euclidean space ? n ,G(X) a given vector withn real components defined in ? u ,U an unknown vector withs real components,K a known vector withs real components andA a given reals×n matrix of ranks. Assuming that, for every pair of pointsX 1 , X2of ? n ,G(X) satisfies the conditions $$(G(X_1 ) - G(X_2 ), X_1 - X_2 ) \geqslant o (X_1 - X_2 , X_1 - X_2 )$$ and $$\left\| {(G(X_1 ) - G(X_2 )\left\| { \leqslant M} \right\|X_1 - X_2 )} \right\|$$ wherec andM are positive constants, we prove that a unique solution of the system $$\left\{ \begin{gathered} G(X) + A ^T U = 0 \hfill \\ AX = K \hfill \\ \end{gathered} \right.$$ exists and we show a method for finding such a solution  相似文献   

15.
P. Baratella 《Calcolo》1977,14(3):237-242
In this paper we study the remainder term of a quadrature formula of the form $$\int\limits_{ - 1}^1 {f(x)dx = A_n \left[ {f( - 1) + f(1)} \right] + C_n \sum\limits_{i = 1}^n {f(x_{n,i} ) + R_n \left[ f \right],} } $$ , withx x,i -1,1, andR n [f]=0 whenf(x) is a polynomial of degree ≤n+3 ifn is even, or ≤n+2 ifn is odd. Such a formula exists only forn=1(1)11. It is shown that, iff(x)∈ C(h+1) [-1,1], (h=n+3 orn+2), thenR n [f]=f h+1 (τ)·± n . The values α n are given.  相似文献   

16.
F. Costabile 《Calcolo》1971,8(1-2):61-75
For the numerical integration of the ordinary differential equation $$\frac{{dy}}{{dx}} = F(x,y) y(x_0 ) = y_0 \begin{array}{*{20}c} x \\ {x_0 } \\ \end{array} \varepsilon [a,b]$$ a third method utilizing only two points for every step, is determined different from the analogous Runge-Kutta method employing three points; it is useless take the first step as the «pseudo Runge-Kutta method». The truncation error is given, the convergence is proved and finally a numerical exercise is given.  相似文献   

17.
In this paper we construct an interpolatory quadrature formula of the type $$\mathop {\rlap{--} \smallint }\limits_{ - 1}^1 \frac{{f'(x)}}{{y - x}}dx \approx \sum\limits_{i = 1}^n {w_{ni} (y)f(x_{ni} )} ,$$ wheref(x)=(1?x)α(1+x)β f o(x), α, β>0, and {x ni} are then zeros of then-th degree Chebyshev polynomial of the first kind,T n (x). We also give a convergence result and examine the behavior of the quantity \( \sum\limits_{i = 1}^n {|w_{ni} (y)|} \) asn→∞.  相似文献   

18.
Open dynamical systems which are governed by a finite number of ordinary differential equations with controls (time-dependent control parameters) constitute a large and important class of models for practical purposes. In the last few years, there has been considerable interest and progress in algebraic methods for solving the equations of the form (*) $$\dot x\left( t \right) = L_0 x\left( t \right) + \sum\limits_{j = 1}^r {u\left( t \right)L_i x\left( t \right)} ,$$ i.e. bilinear models. In this paper, intended as an expository introduction to the main results of system-theoretic approach to the modelling of open systems, a new “polynomial” representation of solutions to (*) is discussed.  相似文献   

19.
We describe an extension to our quantifier-free computational logic to provide the expressive power and convenience of bounded quantifiers and partial functions. By quantifier we mean a formal construct which introduces a bound or indicial variable whose scope is some subexpression of the quantifier expression. A familiar quantifier is the Σ operator which sums the values of an expression over some range of values on the bound variable. Our method is to represent expressions of the logic as objects in the logic, to define an interpreter for such expressions as a function in the logic, and then define quantifiers as ‘mapping functions’. The novelty of our approach lies in the formalization of the interpreter and its interaction with the underlying logic. Our method has several advantages over other formal systems that provide quantifiers and partial functions in a logical setting. The most important advantage is that proofs not involving quantification or partial recursive functions are not complicated by such notions as ‘capturing’, ‘bottom’, or ‘continuity’. Naturally enough, our formalization of the partial functions is nonconstructive. The theorem prover for the logic has been modified to support these new features. We describe the modifications. The system has proved many theorems that could not previously be stated in our logic. Among them are:
  • ? classic quantifier manipulation theorems, such as $$\sum\limits_{{\text{l}} = 0}^{\text{n}} {{\text{g}}({\text{l}}) + {\text{h(l) = }}} \sum\limits_{{\text{l = }}0}^{\text{n}} {{\text{g}}({\text{l}})} + \sum\limits_{{\text{l = }}0}^{\text{n}} {{\text{h(l)}};} $$
  • ? elementary theorems involving quantifiers, such as the Binomial Theorem: $$(a + b)^{\text{n}} = \sum\limits_{{\text{l = }}0}^{\text{n}} {\left( {_{\text{i}}^{\text{n}} } \right)} \user2{ }{\text{a}}^{\text{l}} {\text{b}}^{{\text{n - l}}} ;$$
  • ? elementary theorems about ‘mapping functions’ such as: $$(FOLDR\user2{ }'PLUS\user2{ O L) = }\sum\limits_{{\text{i}} \in {\text{L}}}^{} {{\text{i}};} $$
  • ? termination properties of many partial recursive functions such as the fact that an application of the partial function described by $$\begin{gathered} (LEN X) \hfill \\ \Leftarrow \hfill \\ ({\rm I}F ({\rm E}QUAL X NIL) \hfill \\ {\rm O} \hfill \\ (ADD1 (LEN (CDR X)))) \hfill \\ \end{gathered} $$ terminates if and only if the argument ends in NIL;
  • ? theorems about functions satisfying unusual recurrence equations such as the 91-function and the following list reverse function: $$\begin{gathered} (RV X) \hfill \\ \Leftarrow \hfill \\ ({\rm I}F (AND (LISTP X) (LISTP (CDR X))) \hfill \\ (CONS (CAR (RV (CDR X))) \hfill \\ (RV (CONS (CAR X) \hfill \\ (RV (CDR (RV (CDR X))))))) \hfill \\ X). \hfill \\ \end{gathered} $$
  •   相似文献   

    20.
    H. Hong 《Computing》1996,56(4):371-383
    Let the two dimensional scalar advection equation be given by $$\frac{{\partial u}}{{\partial t}} = \hat a\frac{{\partial u}}{{\partial x}} + \hat b\frac{{\partial u}}{{\partial y}}.$$ We prove that the stability region of the MacCormack scheme for this equation isexactly given by $$\left( {\hat a\frac{{\Delta _t }}{{\Delta _x }}} \right)^{2/3} + \left( {\hat b\frac{{\Delta _t }}{{\Delta _x }}} \right)^{2/3} \leqslant 1$$ where Δ t , Δ x and Δ y are the grid distances. It is interesting to note that the stability region is identical to the one for Lax-Wendroff scheme proved by Turkel.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号