首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reduction of NO to N2/N2O in the presence of excess O2 has been successfully achieved at 70 °C using an electrochemical cell of the type, 0.1% NO, 0–10% O2, Pt | NAFION | Pt, H2O. An H+-conducting solid polymer electrolyte (SPE) plays a key role in evolving hydrogen on the Pt cathode, where the catalytic NO–H2 takes place. It was revealed that the competitive H2–O2 reaction is suppressed because the Pt surface was covered with stable nitrate (NO3) species, which blocks oxygen adsorption hereon. The inhibition of H2–O2 reaction becomes most efficient at 100 °C in agreement with the optimal operation temperature range of SPE. The reduction efficiency of NO in an excess O2 could be improved by packing 1 wt% Pt/ZSM-5 catalyst in the cathode room. The combination between the SPE cell and Pt catalysts can broadly be applied to novel low-temperature deNOx processes in a strongly oxidizing atmosphere.  相似文献   

2.
Isomerization of n-hexane and n-pentane were studied using equivalent 5 monolayers of MoO3 deposited on TiO2. Addition of 2.5% Pt by weight of MoO3 on the Mo catalyst resulted in an increase in the catalytic activity of the system in favor of hydrocracking products. Surface characterization by XPS-UPS and ISS reveal that the sample surface contains Oxygen, Molybdenum, Platinum and Titanium. Apparently, the metallic properties of the deposited Pt favors the hydrocracking reactions and becomes dominant at reaction temperatures higher than 623 K. Balanced metal-acid functions in MoO2 − x(OH)y phase seems to be in optimized condition toward the hydroisomerization process. The contribution of Platinum addition to this catalytic reaction is not obvious. Combination of surface XPS-UPS, ISS and catalytic reactions carried out at similar experimental conditions enabled us to have better insight concerning the catalytic activities of the different chemical species present on the sample surface.  相似文献   

3.
The selective catalytic reduction of NOx with NH3 in the presence of decane over Cu/ZSM-5 catalysts prepared from H+ and Na+ZSM-5 precursors were investigated. Cu/NaZSM-5 catalyst showed significantly higher NOx conversion compared to Cu/HZSM-5. However, the presence of decane decreased the activity of both the catalysts, due to coke formation. Cu/HZSM-5 catalyst showed a larger decline in NOx conversion with time on stream compared to Cu/NaZSM-5. The higher activity of Cu/NaZSM-5 is attributed, to the promoting effect of Na+ cations in the formation of active Cu+ and nitrite and nitrate intermediates species and retardation of coke formation.  相似文献   

4.
Mesoporous and nanosized cobalt aluminate spinel with high specific surface area was prepared using microwave assisted glycothermal method and used as soot combustion catalyst in a NOx + O2 stream. For comparison, zinc aluminate spinel and alumina supported platinum catalysts were prepared and tested. All samples were characterised using XRD, (HR)TEM, N2 adsorption–desorption measurements. The CoAl2O4 spinel was able to oxidise soot as fast as the reference Pt/Al2O3 catalyst. Its catalytic activity can be attributed to a high NOx chemisorption on the surface of this spinel, which leads to the fast oxidation of NO to NO2.  相似文献   

5.
The nature and relative populations of adsorbed species formed on the surface of un-promoted and sodium-promoted Pt catalysts supported either on bare Al2O3 or CeO2/La2O3-modified Al2O3, were investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) under simulated automobile exhaust conditions (CO + NO + C3H6 + O2) at the stoichiometric point. The DRIFT spectra indicate that interaction of the reaction mixture with the Pt/Al2O3 catalyst leads mainly to formation of formates and acetates on the support and carbonyl species on partially positively charged Pt atoms (Ptδ+). Although enrichment of Al2O3 with lanthanide elements (CeO2 and La2O3) does not significantly modify the carboxylate species formed on the support, it causes significant modification of the oxidation state of Pt, as indicated by the appearance of a substantial population of carbonyl species on reduced Pt sites (Pt0–CO). This modification of the Pt component is enhanced when Na-promotion is used, leading to formation of carbonyl species only on electron enriched Pt (i.e., fully reduced Pt0 sites) and to the formation of NCO on these Pt entities (2180 cm−1). The latter are thought to result from enhanced NO dissociation at Na-modified Pt sites. These results correlate well with observed differences in the catalytic performance of the three different systems.  相似文献   

6.
The catalytic activity behavior for the selective catalytic reduction of NO by C3H6 under excess oxygen and the nature of surface species on the active sites of Pt/Al2O3 catalyst after adding a second metal (Fe, Sn, Co, Cr or W) were investigated. It has been found that an important role of second metals is on TONs of C3H6 and NO conversions and the nature of surface species produced on the catalyst surface at low temperature instead of the catalytic activity behavior towards the temperature programmed reaction. Although the introduction of each second metal distinctly disturbs the characteristic of surface species, the reaction mechanism is presumably similar. The observation of few surface species and the investigation about their reactivity indicate that few mechanisms are simultaneously proceeding at the same reaction condition.  相似文献   

7.
Using TiO2 as carrier, CuO/TiO2 catalysts with different CuO loading were prepared by the impregnation method. The catalytic activities in NO+CO reaction were examined with a micro-reactor gas chromatography reaction system and the methods of TPR, XPS and NO-TPD. It was found that the catalytic activities were affected by pretreatment atmosphere, i.e. H2 atmosphere > reduction–reoxidation > 10%CO/He > reaction gas (fresh sample). NO decomposition was better by low-valence Cu species than by high-valence Cu species, i.e. Cu0>Cu+>Cu2+. The XPS results indicated that Cu species on CuO/TiO2 were Cu0, Cu+, normal Cu2+(Cu2+(I)) and chain-structured Cu2+(Cu2+(II)) as –Cu–O–Ti–O–. The activities of Cu2+(II) were much higher than that of Cu2+(I), but both species were very unstable in the reaction atmosphere and easily reduced by CO, which accounted for the variable activities of fresh catalysts with increasing reaction temperature. In NO+CO reaction, the redox process was a cycle of Cu+–Cu2+(I) at low reaction temperature but was a cycle of Cu0–Cu+ at high reaction temperature. As shown by NO-TPD, high catalytic activities could be attributed to the following factors, e.g. oxygen caves on the catalyst’s surface after pretreatment with H2 and reduction–reoxidation, formation of Cu0 after pretreatment with H2, and increment of Cu species dispersion and formation of Cu2+(II) after pretreatment with reduction–reoxidation.  相似文献   

8.
Li Zhong  Wang Ruiyu  Zheng Huayan  Xie Kechang 《Fuel》2010,89(7):1339-1343
CuIY catalyst was prepared by heating the mixture of CuCl2 and acidic Y zeolite under flowing nitrogen and characterized by TG/DTG, XRD and elementary analysis techniques. The experimental result indicate that when the heating temperature was from 350 °C to 500 °C, the CuCl2 of the CuCl2 and acidic Y zeolite mixture sample decompose to CuCl and Cl2 gas, then the produced CuCl reacted with the Brønsted acid center H+ of Y zeolite to form CuIY catalyst by the solid-state ion-exchanged reaction. The amount of ion-exchanged CuI in the CuIY catalyst reached the maximum of 0.1 mol/g when the heating temperature was 650 °C, and the catalyst exhibited the best catalytic activity, the conversion of methanol (CMeOH), the selectivity and the space-time yield of dimethyl carbonate (SDMC and STY) reached 4.36%, 74.55% and 97.32 mg/(g h), respectively.  相似文献   

9.
Bin Wen 《Fuel》2002,81(14):1841-1846
The NO SCR (selective catalytic reduction) activity with H2 in the presence of excess O2 was investigated over Pd/MFI catalyst prepared by sublimation method. With GHSV=90?000 h−1, a very high steady-state conversion of NO to N2 (70%) is achieved at 100 °C. Significant reorganizations take place inside the catalyst upon its first contact with all reactants and products at the reaction temperature. Pd0, which has a significant role in the NO-H2-O2 reaction, is possibly the active site for NO reduction. The formation of Pd-β hydride deactivates the catalyst for NO reduction. Throughout the entire NO-H2-O2 reaction, no N2O or NO2 is formed; N2 is the only N-containing product. The presence of O2 inhibits the formation of undesirable NH3. The rate of the NO+H2 reaction is fast or comparable to that of the H2+O2 reaction. The oxidation of Pd0 and subsequent agglomeration of PdO are responsible for the decreased NO reduction activity at high temperature.  相似文献   

10.
Chitosan-graft-polyacrylamide (Ch-g-PAM) was synthesized without any radical initiator or catalyst using microwave (MW) irradiation. Under optimal grafting conditions, 169% grafting was observed at 80% MW power in 1.16 min. Conventionally under similar conditions a maximum grafting of 82% could be achieved in 1 h using K2S2O8/ascorbic acid as redox initiator coupled with Ag+ ions as catalyst and atmospheric oxygen as co-catalyst on a thermostatic water bath at 35±0.2 °C. The representative microwave synthesized graft copolymer was characterized by Fourier transform-infrared spectroscopy, thermo gravimetric analysis and X-ray diffraction measurement, taking chitosan as a reference. The effects of reaction variables as monomer/chitosan concentration, MW power and exposure time on the graft co-polymerization were studied. A probable free radical mechanism for grafting under microwaves has been proposed. The solubility pH for the grafted samples with different extent of grafting was monitored. The adsorption capacity of chitosan was much enhanced after grafting. The microwave synthesized Ch-g-PAM in comparison to that prepared conventionally was found to have much more adsorption ability for Ca2+ and Zn2+ ions in aqueous solution.  相似文献   

11.
Novel carbon supported Pt/SnOx/C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, COad stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnOx/C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnOx/C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 °C. On all Pt/SnOx/C catalysts, acetic acid and acetaldehyde represent dominant products, CO2 formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol−1), but are lower than on Pt/C (32 kJ mol−1). The somewhat better performance of the Pt/SnOx/C catalysts compared to alloyed PtSnx/C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies.  相似文献   

12.
The oxygen reduction reaction (ORR) was studied at carbon supported MoOx-Pt/C and TiOx-Pt nanocatalysts in 0.5 mol dm−3 HClO4 solution, at 25 °C. The MoOx-Pt/C and TiOx-Pt/C catalysts were prepared by the polyole method combined by MoOx or TiOx post-deposition. Home made catalysts were characterized by TEM and EDX techniques. It was found that catalyst nanoparticles were homogenously distributed over the carbon support with a mean particle size about 2.5 nm. Quite similar distribution and particle size was previously obtained for Pt/C catalyst. Results confirmed that MoOx and TiOx post-deposition did not lead to a significant growth of the Pt nanoparticles.The ORR kinetics was investigated by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. These results showed the existence of two E − log j regions, usually observed with polycrystalline Pt in acid solution. It was proposed that the main path in the ORR mechanism on MoOx-Pt/C and TiOx-Pt/C catalysts was the direct four-electron process with the transfer of the first electron as the rate-determining step. The increase in catalytic activity for ORR on MoOx-Pt/C and TiOx-Pt/C catalysts, in comparison with Pt/C catalyst, was explained by synergetic effects due to the formation of the interface between the platinum and oxide materials and by spillover due to the surface diffusion of oxygen reaction intermediates.  相似文献   

13.
The investigation of hydro-conversion behavior of the heavy intermediate products derived from coal direct liquefaction is advantageous to optimize the technological conditions of direct coal liquefaction and improve the oil yield. In this paper, the hydro-conversion of preasphaltenes catalyzed by SO42−/ZrO2 solid acid was investigated based on the structural characterization of preasphaltenes and its hydro-conversion products, and the determination of products distribution and the kinetics of preasphaltenes hydro-conversion. The results indicated that the content of condensed aromatic rings increased, and the contents of hydrogen, oxygen and aliphatic side chains of preasphaltenes decreased with the increase of coal liquefaction temperature. The preasphaltenes showed higher hydro-conversion reactivity while SO42−/ZrO2 solid acid was used as catalyst. Higher temperature and longer time were in favor of increasing the conversion and the oil + gas yield. The conversion of preasphaltenes hydro-conversion under 425 °C, for 40 min reached 81.3% with 51.2% oil + gas yield. SO42−/ZrO2 solid acid was in favor of the catalytic cracking rather than the catalytic hydrogenation in the hydro-conversion of preasphaltenes. The activation energy of preasphaltenes conversion into asphaltenes was 72 kJ/mol. The regressive reactions were only observed at a higher temperature.  相似文献   

14.
Layered metastable lithium manganese oxides, Li2/3[Ni1/3−xMn2/3−yMx+y]O2 (x = y = 1/36 for M = Al, Co, and Fe and x = 2/36, y = 0 for M = Mg) were prepared by the ion exchange of Li for Na in P2-Na2/3[Ni1/3−xMn2/3−yMx+y]O2 precursors. The Al and Co doping produced the T#2 structure with the space group Cmca. On the other hand, the Fe and Mg doped samples had the O6 structure with space group R-3m. Electron diffraction revealed the 1:2 type ordering within the Ni1/3−xMn2/3−yMx+yO2 slab. It was found that the stacking sequence and electrochemical performance of the Li cells containing T#2-Li2/3[Ni1/3Mn2/3]O2 were affected by the doping with small amounts of Al, Co, Fe, and Mg. The discharge capacity of the Al doped sample was around 200 mAh g−1 in the voltage range between 2.0 and 4.7 V at the current density of 14.4 mA g−1 along with a good capacity retention. Moreover, for the Al and Co doped and undoped oxides, the irreversible phase transition of the T#2 into the O2 structure was observed during the initial lithium deintercalation.  相似文献   

15.
An initial Raman study on the effects of intercalation for aprotic electrolyte-based electrochemical double-layer capacitors (EDLCs) is reported. In situ Raman microscopy is employed in the study of the electrochemical intercalation of tetraethylammonium (Et4N+) and tetrafluoroborate (BF4) into and out of microcrystalline graphite. During cyclic voltammetry experiments, the insertion of Et4N+ into graphite for the negative electrode occurs at an onset potential of +1.0 V versus Li/Li+. For the positive electrode, BF4 was shown to intercalate above +4.3 V versus Li/Li+. The characteristic G-band doublet peak (E2g2(i) (1578 cm−1) and E2g2(b) (1600 cm−1)) showed that various staged compounds were formed in both cases and the return of the single G-band (1578 cm−1) demonstrates that intercalation was fully reversible. The disappearance of the D-band (1329 cm−1) in intercalated graphite is also noted and when the intercalant is removed a more intense D-band reappears, indicating possible lattice damage. For cation intercalation, such irreversible changes of the graphite structure are confirmed by scanning electron microscopy (SEM).  相似文献   

16.
Electrochemical activities and structural features of Pt/Sn catalysts supported by hydrogen-reduced SnO2 nanowires (SnO2NW) are studied, using cyclic voltammetry, CO stripping voltammetry, scanning electron microscopy, and X-ray diffraction analysis. The SnO2NW supports have been grown on a carbon paper which is commercially available for gas diffusion purposes. Partial reduction of SnO2NW raises the CO tolerance of the Pt/Sn catalyst considerably. The zero-valence tin plays a significant role in lowering the oxidation potential of COads. For a carbon paper electrode loaded with 0.1 mg cm−2 Pt and 0.4 mg cm−2 SnO2NW, a conversion of 54% SnO2NW into Sn metal (0.17 mg cm−2) initiates the COads oxidation reaction at 0.08 V (vs. Ag/AgCl), shifts the peak position by 0.21 V, and maximizes the CO tolerance. Further reduction damages the support structure, reduces the surface area, and deteriorates the catalytic activity. The presence of Sn metal enhances the activities of both methanol and ethanol oxidation, with a more pronounced effect on the oxidation current of ethanol whose optimal value is analogous to those of PtSn/C catalysts reported in literature. In comparison with a commercial PtRu/C catalyst, the optimal Pt/Sn/SnO2NW/CP exhibits a somewhat inferior activity toward methanol, and a superior activity toward ethanol oxidation.  相似文献   

17.
Makoto Togo 《Electrochimica acta》2007,52(14):4669-4674
Viamin K3-modified poly-l-lysine (PLL-VK3) was synthesized and used as the electron transfer mediator during catalytic oxidation of NADH by diaphorase (Dp) at the anode of biofuel cell. PLL-VK3 and Dp were co-immobilized on an electrode and then coated with NAD+-dependent glucose dehydrogenase (GDH). The resulting enzymatic bilayer (abbreviated PLL-VK3/Dp/GDH) catalyzed glucose oxidation. Addition of carbon black (Ketjenblack, KB) into the bilayer enlarged the effective surface area of the electrode and consequentially increased the catalytic activity. An oxidation current of ca. 2 mA cm−2 was observed when the electrochemical cell contained a stirred 30 mM glucose, 1.0 mM NAD+, pH 7.0 phosphate-buffered electrolyte solution. The performance of glucose/O2 biofuel cells, constructed as fluidic chips with controllable fuel flow and containing a KB/PLL-VK3/Dp/GDH-coated anode and an Ag/AgCl or a polydimethylsiloxane-coated Pt cathode, were evaluated. The open circuit voltage of the cell with the PDMS-coated Pt cathode was 0.55 V and its maximum power density was 32 μW cm−2 at 0.29 V when a pH 7.0-buffered fuel containing 5.0 mM glucose and 1.0 mM NAD+ was introduced into the cell at a flow rate of 1.0 mL min−1. The cell's output increased as the flow rate increased. During 18 h of continuous operation of the cell with a load of 100 kΩ, the output current density declined by ca. 50%, probably due to swelling of the enzyme bilayer.  相似文献   

18.
The effect of the addition of CeO2 to Pt/C catalysts on electrochemical oxidation of alcohols (methanol, ethanol, glycerol, ethylene glycol) was studied in alkaline solution. The ratios of Pt to CeO2 in the catalysts were optimised to give the better performance. The electrochemical measurements revealed that the addition of CeO2 into Pt-CeO2/C catalysts could significantly improve the electrode performance for alcohols oxidation, in terms of the reaction activity and the poisoning resistance, due to the synergistic effect. The electrode with the weight ratio of Pt to CeO2 equals 1.3:1 with platinum loading of 0.30 mg/cm2 showed the highest catalytic activity for oxidation of ethanol, glycerol and ethylene glycol.  相似文献   

19.
High temperature in situ FTIR has been used to investigate the surface species present on Cu/ZSM-5 during the reduction of NOx with propylene in a lean environment. Parallels have been observed between adsorbed surface species and catalytic activity for this reaction. Species detected at low temperatures are not representative of those detected at high temperatures where the catalyst is active. An oxidized nitrogen-containing species has been observed at 2580 cm–1 on Cu during reaction conditions (400°C). In contrast, at low temperatures, where the catalyst is less active, coke and Cu+-CO predominated. The effects of Cu weight loading, C/NO ratio, reaction temperature, and catalyst deactivation by steaming have been investigated with IR.  相似文献   

20.
The electrochemical window of an LiCl-KCl-CaCl2 eutectic melt (52.3:11.6:36.1 mol%) was determined by cyclic voltammetry and open-circuit potentiometry at 723-873 K. The reaction at the anodic limit was confirmed to be Cl2 gas evolution. The reaction at the cathodic limit was found to be a liquid Ca-Li alloy formation on the basis of ICP analysis of the deposits. An Ag+/Ag reference electrode separated with a Pyrex membrane showed good stability for more than 1 week. The standard electrode potential of Ag+/Ag was determined in the temperature range of 723-823 K by measuring the potential of a silver electrode in different concentrations of Ag+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号