首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electroless deposition has been used to synthesize a series of Au–, Ag–, and Cu–Pd/SiO2 bimetallic catalysts having incremental surface coverages and compositions of each group IB metal. Thermodynamically unstable, yet kinetically stable, electroless bath(s) were developed using metal bis-cyano salts of the group 1B metal and N2H4 (for Au and Ag) or DMAB (for Cu) as reducing agents. The times (1–2 h) and profiles (1st order in group 1B metal concentration) observed for complete deposition indicate good kinetic control of the electroless deposition process. The bimetallic catalysts have been characterized using selective chemisorption, atomic absorption spectroscopy (AAS), Fourier transform infrared spectroscopy (FTIR) of adsorbed CO, and X-ray photoelectron spectroscopy (XPS) techniques. Decreases in Pd surface sites with addition of IB metals confirm deposition onto the supported Pd nanoparticle surfaces. FTIR studies suggest that deposition of Cu and Ag are selective towards Pd(1 1 1) sites, while Au deposits non-discriminately on all Pd sites. Finally, XPS measurements for each family of bimetallic catalysts suggest a net electron transfer from the Pd to the deposited metal.  相似文献   

2.
The present work focuses on the development of novel Cu-Pd bimetallic catalysts supported on nano-sized high-surface-area CeO2 for the oxygen-assisted water–gas-shift (OWGS) reaction. High-surface-area CeO2 was synthesized by urea gelation (UG) and template-assisted (TA) methods. The UG method offered CeO2 with a BET surface area of about 215 m2/g, significantly higher than that of commercially available CeO2. Cu and Pd were supported on CeO2 synthesized by the UG and TA methods and their catalytic performance in the OWGS reaction was investigated systematically. Catalysts with about 30 wt% Cu and 1 wt% Pd were found to exhibit a maximum CO conversion close to 100%. The effect of metal loading method and the influence of CeO2 support on the catalytic performance were also investigated. The results indicated that Cu and Pd loaded by incipient wetness impregnation (IWI) exhibited better performance than that prepared by deposition–precipitation (DP) method. The difference in the catalytic activity was related to the lower Cu surface concentration, better Cu–Ce and Pd–Ce interactions and improved reducibility of Cu and Pd in the IWI catalyst as determined by the X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) studies. A direct relation between BET surface area of the CeO2 support and CO conversion was also observed. The Cu-Pd bimetallic catalysts supported on high-surface-area CeO2 synthesized by UG method exhibited at least two-fold higher CO conversion than the commercial CeO2 or that obtained by TA method. The catalyst retains about 100% CO conversion even under extremely high H2 concentration.  相似文献   

3.
Several Pd-based bimetallic catalysts, Pd/Co, Pd/Ni and Pd/Cu, were synthesized by replacement reactions. The catalysts were characterized by XRD and CO chemisorption and their catalytic properties were evaluated using cyclohexene self-hydrogenation. The results suggest that the high catalytic activity of Pd/Ni is most likely due to the monolayer-dispersion of Pd on the Ni surface. The results also suggest that Pd is monolayer-dispersed on the Co surface in Pd/Co, whereas Pd forms surface alloy or solid solution with Cu in Pd/Cu.  相似文献   

4.
Catalytic hydrogenation of CO2 into methanol has been investigated over Raney Cu-based catalysts. The Raney catalysts leached in NaOH/ZnO solutions showed high activities and selectivities for methanol synthesis. The deposition of Zn on the surface of Cu particles increased the surface area and the specific activity of Raney Cu–M. Raney Cu–Zr developed was significantly more active than a commercial catalyst.  相似文献   

5.
Aiming at enhancing H2 production in water gas shift (WGS) for fuel cell application, a small amount of oxygen was added to WGS reaction toward oxygen-enhanced water gas shift (OWGS) on ceria-supported bimetallic Pd–Cu and Pt–Cu catalysts. Both CO conversion and H2 yield were found to increase by the oxygen addition. The remarkable enhancement of H2 production by O2 addition in short contact time was attributed to the enhanced shift reaction, rather than the oxidation of CO on catalyst surface. The strong dependence of H2 production rate on CO concentration in OWGS kinetic study suggested O2 lowers the CO surface coverage. It was proposed that O2 breaks down the domain structure of chemisorbed CO into smaller domains to increase the chance for coreactant (H2O) to participate in the reaction and the heat of exothermic surface reaction helping to enhance WGS kinetics. Pt–Cu and Pd–Cu bimetallic catalysts were found to be superior to monometallic catalysts for both CO conversion and H2 production for OWGS at 300 °C or lower, while the superiority of bimetallic catalysts was not as pronounced in WGS. These catalytic properties were correlated with the structure of the bimetallic catalysts. EXAFS spectra indicated that Cu forms alloys with Pt and with Pd. TPR demonstrated the strong interaction between the two metals causing the reduction temperature of Cu to decrease upon Pd or Pt addition. The transient pulse desorption rate of CO2 from Pd–Cu supported on CeO2 is faster than that of Pd, suggesting the presence of Cu in Pd–Cu facilitate CO2 desorption from Pd catalyst. The oxygen storage capacity (OSC) of CeO2 in the bimetallic catalysts indicates that Cu is much less pyrophoric in the bimetallic catalysts due to lower O2 uptake compared to monometallic Cu. These significant changes in structure and electronic properties of the bimetallic catalysts are the result of highly dispersed Pt or Pd in the Cu nanoparticles.  相似文献   

6.
The understanding of the composition–activity relationship is essential for the exploitation of the synergistic properties of multimetallic nanoparticles in catalytic reactions. This paper focuses on the discussion of findings from the investigation of bimetallic gold-platinum (AuPt) nanoparticles of different compositions. Infrared spectroscopic data for CO adsorption on silica-supported AuPt nanoparticles reveal that the surface binding sites are dependent on the bimetallic composition. The analysis of this dependence further led to the conclusion that the relative Au-atop and Pt-atop sites for the linear CO adsorption on the nanoparticle surface are not only correlated with the bimetallic composition, but also with the electronic effect as a result of the d-band shift of Pt in the bimetallic nanocrystals, which is the first demonstration of the nanoscale core–surface property correlation for the bimetallic nanoparticles over a wide range of bimetallic composition. A further examination of the electrocatalysis data for methanol oxidation reaction on carbon-supported AuPt nanoparticle catalysts reveal important insights into the participation of CO or OH adsorption on Au sites and the catalytic activity of Pt in the AuPt alloys with relatively high Au concentration. Implications of these findings to synergistic correlation of the bifunctional activity of the bimetallic nanoparticle catalysts with the bimetallic composition are also discussed.  相似文献   

7.
A continuous process for nitrate and nitrite abatement from drinking water by catalytic hydrogenation has been developed in our lab. We describe the experimental process development procedure, and support it with semiempirical quantum chemical methods. Comparisons of activated carbon (ACC) and silica glass fiber (GFC) cloths as supports for mono- and bimetallic Pd-Cu catalysts show the former to be 45-fold and 15-fold more active for nitrite and nitrate hydrogenation, respectively, than the latter. Catalysts prepared by selective deposition of Cu on Pd/ACC led to better activity for nitrate hydrogenation than catalysts prepared by co-impregnation or ion exchange methods. The optimal Cu:Pd atomic ratio was found to be 1:2. The computational results show the following: (i) The dispersion of Pd catalysts supported on ACC is much higher than that on GFC due to the larger surface area and higher density of adsorption sites, and that accounts for the higher activity of PdCu/ACC; (ii) Nanosized Pd particles supported on ACC have a semispherical shape and possess preferentially close-packed triangular surfaces, while Pd/GFC particles are extended in the direction parallel to the support surface and show both fcc (100) and (111) planes; (iii) The interaction of Cu atoms with both supports is stronger than that of Pd; adsorbed Cu atoms show a greater ability to form monometallic than bimetallic bonds and that should result in poor mixing of the metal upon co-impregnation, as was observed experimentally; (iv) Cu atoms in bimetallic PdCu particles admit a significant positive charge; the experimentally measured solubility of metal atoms correlates with their calculated charges. The best catalyst (2 wt%Pd-0.6 wt%Cu/ACC) was employed in a novel continuous flow reactor for nitrate hydrogenation in distilled and tap water. The advantages of the reactor investigated over a conventional packed bed reactor are discussed, suggesting a potential for further process intensification.  相似文献   

8.

Abstract  

Bimetallic 15 nm Pd-core Rh-shell Rh1−x Pd x nanoparticle catalysts have been synthesized and studied in CO oxidation by NO. The catalysts exhibited composition-dependent activity enhancement (synergy) in CO oxidation in high NO pressures. The observed synergetic effect is attributed to the favorable adsorption of CO on Pd in NO-rich conditions. The Pd-rich bimetallic catalysts deactivated after many hours of oxidation of CO by NO. After catalyst deactivation, product formation was proportional to the Rh molar fraction within the bimetallic nanoparticles. The deactivated catalysts were regenerated by heating the sample in UHV. This regeneration suggests that the deactivation was caused by the adsorption of nitrogen atoms on Pd sites.  相似文献   

9.
CO species adsorbed on the surface of oxidized bimetallic Rh–Pd catalysts, prepared by coimpregnation and sequential impregnation methods, were analyzed in situ by IR spectroscopy, during the reaction of CO with O2 in an oxidizing atmosphere. The results show that the two methods of impregnation lead to the existence of oxidized Rh on the surface of the bimetallic catalyst, however, in the case of the sequential impregnation method, the Pd surface is more reduced than in the case of catalysts prepared by coimpregnation. The simultaneous presence of reduced Pd and oxidized Rh that occurs in the catalysts prepared by sequential impregnation allows the existence of a synergistic effect similar to that proposed in the literature for the Pt–Rh system. The lower degree of oxidation of the Pd in the catalysts prepared by sequential impregnation, is mainly due to the fact that the Pd in these catalysts comes from the organic precursor palladium acetylacetonate, while in the catalysts prepared by coimpregnation, the Pd comes from the precursor PdCl2. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The interactions of H2 and H2S molecules with Pt–Pd bimetallic catalysts were investigated at the molecular level using a DFT (density functional theory) approach to better understand the structures and properties of active sites, and the relations between structural changes and sulfur resistance. It was found that when alloying the Pt catalyst with a small amount of Pd at a particular surface atomic ratio range, both H2 and H2S showed different adsorption properties compared to those on monometallic Pt or Pd catalyst. The adsorptions of both H2 and H2S were enhanced, but the adsorption energy of H2 increased more than that of H2S, indicating that the adsorption of H2S became less favorable compared with H2 on the bimetallic Pt–Pd catalyst surface. The desorption energy of hydrogen from monometallic Pt or Pd, as well as bimetallic Pt–Pd supported on zeolite, were calculated by temperature-programmed desorption (TPD), the values were compared against the DFT results to explain experimentally and theoretically why the bimetallic Pt–Pd catalyst has better sulfur resistance than monometallic Pt catalyst.  相似文献   

11.
The activity and kinetics of CO oxidation over alumina-supported Pd-Rh bimetallic catalysts were investigated. One bimetallic catalyst, Pd-Rh(2), was prepared by two-step impregnation and another, Pd-Rh(l), by simultaneous impregnation. Monometallic catalysts as well as a physical mixture of them were also prepared. The catalysts were characterized by selective chemisorption of both H2 and CO, and an attempt was made to determine the surface compositions of the bimetallic catalysts. The bimetallic catalysts showed different kinetic behavior, such as higher turnover frequencies (TOFs), lower apparent activation energies and/or negative reaction orders for CO which were smaller in the absolute value, from that of the monometallic catalysts as well as a physical mixture of them. It is suggested that this Pd-Rh synergism is due to an interaction on the catalyst surface, such that adsorbed CO or oxygen on one metal migrates to the other metal site so that the reaction rate is facilitated and also that the particles of Pd and Rh are located close enough to each other for the interaction to occur. On the surface of Pd-Rh (2) most of the Pd and Rh particles existed as separate entities, while a great portion of the particles on Pd-Rh(l) exhibited the surface enrichment of Pd. This explains the higher TOF and the negative reaction orders for CO over Pd-Rh(2) which were smaller in the absolute value than those over Pd-Rh(l).  相似文献   

12.
Au–Cu bimetallic catalysts with Au/Cu ratios ranging from 3/1 to 20/1 were prepared on silica gel support by a two-step method. The catalysts were characterized by ICP, XRD and TEM. The results showed that, irrespective of Au/Cu ratios, all the bimetallic nanoparticles had significantly reduced particle sizes (3.0–3.6 nm) in comparison with monometallic gold catalysts (5.7 nm). Both CO oxidation and PROX reactions were employed to evaluate the catalytic activities of Au–Cu bimetallic catalysts. For CO oxidation, the alloy catalysts show non-monotonic temperature dependence showing a valley in the intermediate temperature range. The catalyst with Au/Cu ratio of 20/1 gave the highest activity at room temperature, but its activity showed the deepest valley with increasing the reaction temperature. On the other hand, the catalyst with Au/Cu ratio of 3/1 exhibited the best performance for PROX reaction. For the Au/Cu ratios investigated, the bimetallic catalysts showed superior performance to monometallic gold catalysts, demonstrating the synergy between gold and copper.  相似文献   

13.
The use of glass fibers in the form of woven cloth (GFC), as a new type of catalytic support, was studied for the reduction of aqueous nitrate solutions using a Pd/Cu–GFC catalyst. The activity (per gram Pd) and selectivity to nitrogen were found to be comparable with those found for Pd–Cu catalysts supported on the other carriers. The maximal initial removal activity was found for a catalyst with a Pd/(Pd+Cu) ratio of 0.81. The corresponding activity was 0.7 mmol min−1 (gPd)−1, and the selectivity was 97 mol% at 25°C and pH 6.5 for initial nitrate concentration of 100 mg l−1. The selectivity to nitrogen declined at high conversions of nitrate and high pH.  相似文献   

14.
n-Decane hydroconversion has been investigated on bifunctional catalysts comprising bimetallic Pt–Pd clusters supported on an AlMCM-41 (nSi/nAl = 23) mesoporous molecular sieve. The catalytic activity of the bimetallic Pt–Pd catalysts is higher than that of the monometallic Pt and Pd catalysts. The good balance between the two catalytic functions, namely acid sites and metal sites, also results in a higher isomer yield at a substantially lower reaction temperature. Moreover, cracking on the metal sites (hydrogenolysis) is largely suppressed over certain bimetallic catalysts.  相似文献   

15.
The catalytic combustion of methane at low temperature under lean conditions was investigated over bimetallic palladium-platinum catalysts supported on alumina. Pd-Pt catalysts with constant 2 wt.% metal loading and varying compositions in Pt and Pd were prepared by successive impregnations of the metal salts. The catalysts were characterised by powder X-ray diffraction, transmission electron microscopy/electron dispersion X-ray spectroscopy (TEM/EDX), volumetry of H2 chemisorption, FTIR study of CO adsorption and temperature-programmed oxidation (TPO). In the absence of water added to the feed, the methane conversion over Pd-rich bimetallic catalysts (Pt/Pt + Pd molar ratios less than 0.3) was found to be the same as that of the reference Pd/Al2O3 catalyst. Interestingly, under wet conditions, these bimetallic catalysts exhibited an improved performance with respect to Pd/Al2O3. This effect was found to be maintained upon mild steam ageing. An interaction between both metals was suggested to explain the enhanced activity of bimetallic catalysts. This was confirmed by TPO experiments indicating that formation and decomposition of PdO is affected upon Pt addition even for very low amounts of Pt. The adsorption of CO on reduced catalysts studied by FTIR revealed new types of adsorbed CO species, suggesting again an interaction between two metals.  相似文献   

16.
Shape selectivity of trace by-products in supercritical water oxidation (SCWO) of 2-chlorophenol (2CP) catalyzed by CuO/ZSM-48 has been investigated. Experimentally, destruction efficiency of 2CP in the SCWO process is effectively enhanced by CuO/zeolite catalysts. In the two-dimensional (2D) channels of ZSM-48, formation of undesired by-products such as polycyclic aromatic hydrocarbons (PAHs) and higher chlorinated phenols (via the Cl-reinsertion) is extremely suppressed in the SCWO of 2CP compared to those observed for zeolites ZSM-5 and Y with three-dimensional (3D) channel structure and larger pore sizes, respectively. The main oxidation active species on CuO/ZSM-48 surfaces were CuO and Cu2O determined by X-ray photoelectron spectroscopy (XPS). Ratios of the surface species CuO/Cu2O are between 13.4 and 14.1 in the SCWO process. However, the existence of the Cu–O and Cu–Cu species with a Cu–O/Cu–Cu ratio of 3.5 in the copper catalyst is also observed by extended X-ray absorption fine structure (EXAFS) spectroscopy. Furthermore, since the absence of Cu–Cl species in the XPS and EXAFS spectra, one would suggest that copper in the channels of ZSM-48 is unlikely involved in the abstraction of Cl species from 2CP in the SCWO process.  相似文献   

17.
Bimetallic Ru–Cu catalysts supported on KL zeolite have been prepared by coimpregnation with ionic precursors and characterized by several methods, such as temperature-programmed reduction, CO and hydrogen chemisorption, nitrogen adsorption, infrared spectroscopy of chemisorbed CO and microcalorimetry of CO adsorption. The catalytic behavior of the samples was analyzed in the selective hydrogenation of citral in the liquid phase, at 323 K and 5 MPa. The presence of bimetallic entities as well as of segregated copper species was recognized by the TPR measurements. The CO-FTIR and microcalorimetry results evidence that the higher the Cu/Ru atomic ratio the larger the surface heterogeneity, with formation of Cuδ+ species. Bimetallic catalysts are more active than the monometallic ruthenium catalyst in the hydrogenation of citral, but this activity decreases with the increasing of copper concentration. In addition, selectivity towards citronellal decreases as the copper content increases, in opposite trend to the selectivity toward geraniol and nerol. For low copper loading (Cu/Ru ≈ 0.4) formation of a surface alloy is discussed. This surface structure is particularly active for hydrogenation of the conjugated CC double bond of citral. For Cu/Ru = 0.8 and Cu/Ru = 1.2 samples, three-dimensional islands of segregated copper seem to cover, in part, the surface alloy. This latter surface structure is less active than the preceding one for hydrogenation of the CC double bond, but more selective for hydrogenation of the CO group of citral.  相似文献   

18.
Au–Cu and Pd–Cu bimetallic model catalysts were prepared on native SiO2/Si(100) substrate under ultra high vacuum (UHV) by employing buffer layer assisted growth procedure with amorphous solid water as the buffer material. The effect of the bimetallic nanoclusters (NCs) surface composition and morphology on their chemical reactivity has been studied with acetylene decomposition and conversion to ethylene and benzene as the chemical probe. It was found that among the Au–Cu NCs compositions, Au0.5Cu3 NCs revealed outstanding catalytic selectivity towards ethylene formation. These NCs were further characterized by employing TEM, XPS and HAADF-STEM coupled EDX analysis. With CO molecule as a probe, CO temperature programmed desorption has been used to investigate the distribution of gold on the top-most surface of the supported clusters. Surface segregation at high relative elemental fraction of gold leads to a decreased activity of the Au–Cu NCs towards ethylene formation. In contrast to the Au–Cu NCs, the Pd–Cu bimetallic system reveals reduced sensitivity to the relative elemental composition with respect to selectivity of the acetylene transformation toward ethylene formation. On the other hand, remarkable activity towards benzene formation has been observed at elemental composition of Cu3Pd, at comparable rates to those for ethylene formation on clean Pd NCs.  相似文献   

19.
Pd/Fe双金属对水中m-二氯苯的催化脱氯   总被引:12,自引:2,他引:10  
周红艺  徐新华  汪大翚 《化工学报》2004,55(11):1912-1915
引 言氯代芳烃及其衍生物化学性质稳定 ,易在生物体内累积 ,大多被列为美国EPA环境优先控制污染物 ,一旦进入环境将对人类及其生态环境造成长期威胁 .因此 ,氯代芳烃的治理技术日益引起全球的关注[1] .自 2 0世纪 80年代末提出金属铁屑用于地下水的原位修复以来[2 ,3] ,用Fe0 还原脱氯已成为一个非常活跃的研究领域 ,特别是应用于地下水修复方面的研究 .Fernando等[4~ 7] 将双金属催化剂用于有机氯的催化还原脱氯 ,Fe0 表面的Pd或Ni等金属加速了还原脱氯反应 ,脱氯速率比Fe0 体系快得多 .本研究利用Pd/Fe双金属对m DCB进行了催化还…  相似文献   

20.
The effect of palladium incorporation on the performance of Cu–ZnO(Al2O3) during the hydrogenation of carbon dioxide has been assessed. Temperature-programmed reduction profiles and X-ray photoelectron spectra of copper revealed that Pd enhances copper oxide reduction. Carbon dioxide conversion and methanol yield were found to increase on Pd-loaded catalysts. The importance of the palladium incorporated to the base Cu–ZnO(Al2O3) catalyst in determining the catalytic activity is discussed in terms of the relative ease with which hydrogen is dissociated on the Pd particles and then spilt over the Cu–ZnO phase of the base catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号