首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Laskin J  Yang Z  Lam C  Chu IK 《Analytical chemistry》2007,79(17):6607-6614
Comparison between the gas-phase fragmentation of odd-electron M+*, [M + H]2+*, and [M - 2H]-* ions of model peptides suggests that charge-remote radical-driven fragmentation pathways play an important role in the dissociation of odd-electron peptide ions. We have found that charge-remote processes are responsible for a variety of side-chain losses from the precursor ion and some backbone fragmentation. These fragmentation pathways most likely involve hydrogen abstraction by the radical site that initiates subsequent cleavages. These findings are generally relevant to our understanding of the fragmentation patterns of odd-electron peptide ions produced through various approaches including the capture of low-energy electrons, electron detachment, and electron transfer.  相似文献   

2.
Xu Y  Brenna JT 《Analytical chemistry》2007,79(6):2525-2536
We report a method to elucidate the structure of triacyl-glycerols (TAGs) containing monoene or diene fatty acyl groups by atmospheric pressure covalent adduct chemical ionization (APCACI) tandem mass spectrometry using acetonitrile as an adduct formation reagent. TAGs were synthesized with the structures ABB and BAB, where A is palmitate (C16:0) and B is an isomeric C18 monoene unsaturated at position 9, 11, or 13 or an isomeric diene unsaturated at positions 9 and 11, 10 and 12, or 9 and 12. In addition to the species at m/z 54 observed in previous CI studies of fatty acid methyl esters, we also found that ions at m/z 42, 81, and 95 undergo covalent reaction with TAGs containing double bonds to yield ions at m/z 40, 54, 81, and 95 units greater than that of the parent TAG: [M + 40]+, [M + 54]+, [M + 81]+, and [M + 95]+ ions. When collisionally dissociated, these ions fragment to produce two or three diagnostic ions that locate the double bonds in the TAG. In addition, ions [RCH=C=O + 40]+ and [RCH=C=O + 54]+ formed from collisional dissociation are of strong abundance in MS/MS spectra, and collisional activation of these ions produces two intense confirmatory diagnostic ions in the MS3 spectra. Fragment ions reflecting neutral loss of an sn-1-acyl group from [M + 40]+ and [M + 54]+ are more abundant than those reflecting neutral loss of an sn-2-acyl group, analogous to previous reports for protonated TAGs. The position of each acyl group on the glycerol backbone is thus determined by the relative abundances of these ions. Under the conditions in our instrument, the [M + 40]+ adduct is at the highest signal and also yields all information about the double bond position and TAG stereochemistry. With the exception of geometries about the double bonds, racemic TAG isomers containing two monoenes or dienes and a saturate can be fully characterized by APCACI-MS/MS/MS.  相似文献   

3.
Argentinated peptide ions are formed in abundance under matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) conditions in the presence of Ag+ ions. These argentinated peptide ions are fragmented facilely under MALDI-MS/MS conditions to yield [b(n) + OH + Ag]+, [b(n) - H + Ag]+ and [a(n) - H + Ag]+ ions that are indicative of the C-terminal sequence. These observations parallel those made earlier under electrospray MS conditions (Chu, I. K; Guo, X.; Lau, T.-C.; Siu, K W. M. Anal. Chem. 1999, 71, 2364-2372). A mixed protonated and argentinated tryptic peptide map was generated from 37 fmol of bovine serum albumin (BSA) using MALDI-MS. MALDI-MS/MS data from four argentinated peptides at a protein amount of 350 fmol unambiguously identified the protein as BSA. Sequence-tag analysis of two argentinated tryptic peptides was used to identify unambiguously myocyte enhancer factor 2A, which had been recombinantly expressed in a bacterial cell line.  相似文献   

4.
Ions formed from lipids during electrospray ionization of crude lipid extracts have been mass-selected within a quadrupole linear ion trap mass spectrometer and allowed to react with ozone vapor. Gas-phase ion-molecule reactions between unsaturated lipid ions and ozone are found to yield two primary product ions for each carbon-carbon double bond within the molecule. The mass-to-charge ratios of these chemically induced fragments are diagnostic of the position of unsaturation within the precursor ion. This novel analytical technique, dubbed ozone-induced dissociation (OzID), can be applied both in series and in parallel with conventional collision-induced dissociation (CID) to provide near-complete structural assignment of unknown lipids within complex mixtures without prior fractionation or derivatization. In this study, OzID is applied to a suite of complex lipid extracts from sources including human lens, bovine kidney, and commercial olive oil, thus demonstrating the technique to be applicable to a broad range of lipid classes including both neutral and acidic glycerophospholipids, sphingomyelins, and triacylglycerols. Gas-phase ozonolysis reactions are also observed with different types of precursor ions including [M+H]+, [M+Li]+, [M+Na]+, and [M-H]-: in each case yielding fragmentation data that allow double bond position to be unambiguously assigned. Within the human lens lipid extract, three sphingomyelin regioisomers, namely SM(d18:0/15Z-24:1), SM(d18:0/17Z-24:1), and SM(d18:0/19Z-24:1), and a novel phosphatidylethanolamine alkyl ether, GPEtn(11Z-18:1e/9Z-18:1), are identified using a combination of CID and OzID. These discoveries demonstrate that lipid identification based on CID alone belies the natural structural diversity in lipid biochemistry and illustrate the potential of OzID as a complementary approach within automated, high-throughput lipid analysis protocols.  相似文献   

5.
A novel electrospray ionization (ESI) mass spectrometric approach for the structure elucidation of ionic organotin(IV) compounds or complexes with weakly bonded ligands as for example monodentate carboxylates or sulfonates is proposed using both positive-ion and negative-ion ESI tandem mass spectra. The ionization mechanism of organotin(IV) compounds involves the cleavage of the most labile bond with an ionic character yielding two complementary ions, [Cat]+ and [An]-. Positively charged species containing tin atom, [Cat]+, are analyzed in the positive-ion mode and negatively charged species without the tin atom, [An]-, in the negative-ion mode. Fragmentation patterns of [C24H29N2Sn]+, [C21H22NSn]+, and [C17H30NSn]+ ions are proposed based on the detailed interpretation of MSn spectra, which is simplified by an easy recognition of characteristic tin isotopic clusters in particular fragment ions. Proposed fragmentation mechanisms are supported by comparison with MSn spectra of deuterium-labeled analogues. The applicability of this method is illustrated on two sets of organotin(IV) compounds, including seven [2,6-bis(dimethylaminomethyl)phenyl]diphenyltin(IV) derivatives with small inorganic counteranions X (Br, NO3, SCN, BF4, SeCN, CN, PF6), six organotin(IV) complexes containing two C,N-chelating ligands with azo dyes, and the identification of unknown hydrolysis products.  相似文献   

6.
The direct detection of the nerve agent VX (methylphosphonothioic acid, S-[2-[bis(1-methylethyl)amino]ethyl] O-ethyl ester) on milligram quantities of soil particles has been achieved using ion trap secondary ion mass spectrometry (IT-SIMS). VX is highly adsorptive toward a wide variety of surfaces; this attribute makes detection using gas-phase approaches difficult but renders the compound very amenable to surface detection. An ion trap mass spectrometer, modified to perform SIMS, was employed in the present study. A primary ion beam (ReO4-) was fired on axis through the ion trap, where it impacted the soil particle samples. [VX + H]+, [VX + H]+ fragment ions, and ions from the chemical background were sputtered into the gas-phase environment of the ion trap, where they were either scanned out or isolated and fragmented (MS2). At a surface concentration of 0.4 monolayer, intact [VX + H]+, and its fragment ions, were readily observable above background. However, at lower concentrations, the secondary ion signal from VX became obscured by ions derived from the chemical background on the surface of the soil particles. MS2 analysis using the ion trap was employed to improve detection of lower concentrations of VX: detection of the 34S isotopic ion of [VX + H]+, present at a surface concentration of approximately 0.002 monolayer, was accomplished. The study afforded the opportunity to investigate the fragmentation chemistry of VX. Semiempirical calculations suggest strongly that the molecule is protonated at the N atom. Deuterium labeling showed that formation of the base peak ion (C2H4)N(i-C3H7)2+ involves transfer of the amino proton to the phosphonothioate moiety prior to, or concurrent with, C-S bond cleavage. To manage the risk associated with working with the compound, the vacuum unit of the IT-SIMS was located in a hood, connected by cables to the externally located electronics and computer.  相似文献   

7.
The beam-type and ion trap collision-induced dissociation (CID) behaviors of protonated bovine ubiquitin ions were studied for charge states ranging from +6 to +12 on a modified triple quadrupole/linear ion trap tandem mass spectrometer. Both beam-type CID and ion trap CID were conducted in a high-pressure linear ion trap, followed by proton-transfer ion/ion reactions to reduce the charge states of product ions mostly to +1. The product ions observed under each activation condition were predominantly b- and y-type ions. Fragmentation patterns showed a much stronger dependence on parent ion charge state with ion trap CID than with beam-type CID using nitrogen as the collision gas, with preferential cleavages C-terminal to aspartic acid at relatively low charge states, nonspecific fragmentation at moderate charge states, and favored cleavages N-terminal to proline residues at high charge states. In the beam-type CID case, extensive cleavage along the protein backbone was noted, which yielded richer sequence information (77% of backbone amide bond cleavages) than did ion trap CID (52% of backbone amide bond cleavages). Collision gas identity and collision energy were also evaluated in terms of their effects on the beam-type CID spectrum. The use of helium as collision gas, as opposed to nitrogen, resulted in CID behavior that was sensitive to changes in collision energy. At low collision energies, the beam-type CID data resembled the ion trap CID data with preferential cleavages predominant, while at high collision energies, nonspecific fragmentation was observed with increased contributions from sequential fragmentation.  相似文献   

8.
Mass spectrometry and tandem mass spectrometry of citrus limonoids   总被引:2,自引:0,他引:2  
Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring structure. CAD of the adduct ion [M + H + NH3]+ of limonoid glucosides produced the aglycone moiety corresponding to each glucoside. The combination of mass spectrometry and tandem mass spectrometry provides a powerful technique for identification and characterization of citrus limonoids.  相似文献   

9.
Tandem mass spectrometry was applied both to ions of a tryptic fragment and intact protein of bovine alpha-crystallin A chain to localize the single site of phosphorylation. The [M + 19H](19+) to [M + 11H](11+) charge states of both phosphorylated and unphosphorylated bovine alpha-crystallin A chain whole protein ions were subjected to collisional activation in a quadrupole ion trap. Ion parking was used to increase the number of parent ions over that yielded by electrospray. Ion-ion proton-transfer reactions were used to reduce the product ion charge states largely to +1 to simplify spectral interpretation. In agreement with previous studies on whole protein ion fragmentation, both protein forms showed backbone cleavages C-terminal to aspartic acid residues at lower charge states. The phosphorylated protein showed competitive fragmentation between backbone cleavage and the neutral loss of phosphoric acid. Analysis of which backbone cleavage products did or did not contain the phosphate was used to localize the site of phosphorylation to one of two possible serine residues. A tryptic digest of the bovine alpha-crystallin A chain yielded a phosphopeptide containing one missed cleavage site. The peptide provided information complementary to that obtained from the intact protein and localized the modified serine to residue 122. Fragmentation of the triply charged phosphopeptide yielded five possible serine phosphorylation sites. Fragmentation of the doubly charged phosphopeptide, formed by ion/ion proton-transfer reactions, positively identified the phosphorylation site as serine-122.  相似文献   

10.
I K Chu  X Guo  T C Lau  K W Siu 《Analytical chemistry》1999,71(13):2364-2372
A strategy for semiautomatic sequencing of argentinated (silver-containing) oligopeptides has been developed. Sequencing is based on a search algorithm that identifies a triplet peak relationship in a product ion spectrum of the [M + Ag]+ ion of an oligopeptide. The ions that constitute a triplet are [bn + OH + Ag]+, [bn - H + Ag]+, and [a(n) - H + Ag]+, which are separated by 18 and 28 m/z units, respectively. The difference in the m/z values of adjacent triplets identifies the residue that is "cleaved". Observation of the [yn + H + Ag]+ ion containing the cleaved residue confirms the assignment. Sequencing of argentinated tryptic peptides may prove useful for automated proteome analysis via the sequence tag method.  相似文献   

11.
Pyrimidine glycols, or 5,6-dihydroxy-5,6-dihydropyrimidines, are primary lesions in DNA induced by reactive oxygen species. In this article, we report the preparation and tandem mass spectrometry (MS/MS) characterization of the two cis diastereomers of the glycol lesions of 2'-deoxyuridine, 5-methyl-2'-deoxycytidine, and thymidine. Our results show that collisional activation of the [M + Na]+ ions of all the three pairs of cis isomers and that of the [M + H]+ ions of the 2'-deoxyuridine glycols and 5-methyl-2'-deoxycytidine glycols give a facile loss of a water molecule. Interestingly, the water loss occurs more readily for the 6S isomer than for the 6R isomer. Likewise, product ion spectra of the [M - H]- ions of the two cis isomers of the 2'-deoxyuridine glycols and thymidine glycols show more facile loss of water for the 6S isomer than for the 6R isomer. MS/MS acquired at different collisional energies gave similar results, which establishes the reproducibility of spectra.  相似文献   

12.
Recently, an approach for the "top down" sequence analysis of whole protein ions has been developed, employing electrospray ionization, collision-induced dissociation, and ion/ion proton-transfer reactions in a quadrupole ion trap mass spectrometer. This approach has now been extended to an analysis of the [M + 12H]12+ to [M + 5H]5+ ions of ribonuclease A and its N-linked glycosylated analogue, ribonuclease B, to determine the influence of the posttranslational modification on protein fragmentation. In agreement with previous studies on the fragmentation of a range of protein ions, facile gas-phase fragmentation was observed to occur along the protein backbone at the C-terminal of aspartic acid residues, and at the N-terminal of proline, depending on the precursor ion charge state. Interestingly, no evidence was found for gas-phase deglycosylation of the N-linked sugar in ribonuclease B, presumably due to effective competition from the facile amide bond cleavage channels that "protect" the N-linked glycosidic bond from cleavage. Thus, localization of the posttranslational modification site may be determined by analysis of the "protein fragment ion mass fingerprint".  相似文献   

13.
Intermediate pressure matrix-assisted laser desorption/ionization (MALDI) source was constructed and interfaced with a 6-T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially configured for surface-induced dissociation (SID) studies. First MALDI-SID results in FT-ICR are presented, demonstrating unique advantages of SID over conventional FT-ICR MS ion activation techniques for structural characterization of singly protonated peptide ions. Specifically, we demonstrate that SID on a diamond surface results in a significantly better sequence coverage for singly protonated peptides than SORI-CID. A combination of two effects contributes to the improved sequence coverage: shattering of peptide ions on surfaces opens up a variety of dissociation channels at collision energies above 40 eV, and second, wide internal energy distribution deposited by collision with a stiff diamond surface provides an efficient mixing between the primary reaction channels that are dominant at low internal energies and extensive fragmentation at high internal excitation that results from shattering. Activation of MALDI-generated ions by collisions with surfaces in FT-ICR MS is a new powerful method for characterization and identification of biomolecules  相似文献   

14.
The solvolytic dissociation rate constants of 1:2 complexes of Al3+ and Ga3+ with an azo dye ligand, 2,2'-dihydroxyazobenzene-5,5'-disulfonate (DHABS, H2L2-), have been evaluated with a capillary electrophoretic reactor (CER) system. This CER system is based on the fact that metal complexes encounter an overwhelming force to dissociate when apart from the ligand by CE resolution. Treatment of a capillary with a slightly acidic buffer solution, e.g., pH 5, reduces the double-layer potential (zeta) of the inner silica wall. Owing to slow relaxation of the deprotonation equilibria of superficial silanol groups known as the pH hysteresis, this zeta potential can be actually retained during the electrophoresis of the metal complexes in question with a neutral buffer at pH 7.0. This method enables one to manipulate migration times, namely, residence times in a capillary tube, from 5 to 90 min, depending on the prescribed conditioning pH, without changing any other operation conditions such as buffer composition and electric field strength. The excellent performance of the CER is exemplified by the accurate estimation of the dissociation degree of the complexes. The dissociation degree-time profiles for the complexes are quantitatively described using both internal and external standards; the very inert complex of [Co(III)L2]5- for the peak signal standardization and methyl orange for the injection volume correction. The solvolytic dissociation rate constants of the 1:2 complexes of Al3+ and Ga3+ ions with DHABS [AlL2]5- and [GaL2]5- into the 1:1 ones have been determined as (4.9+/-1.0) x 10(-4) and (3.7+/-0.3) x 10(-3) s(-1) at 303 K, respectively.  相似文献   

15.
One of the major factors governing the "top-down" sequence analysis of intact multiply protonated proteins by tandem mass spectrometry is the effect of the precursor ion charge state on the formation of product ions. To more fully understand this effect, electrospray ionization coupled to a quadrupole ion trap mass spectrometer, collision-induced dissociation, and gas-phase ion/ion reactions have been employed to examine the fragmentation of the [M + 12H]12+ to [M + H]+ ions of bovine ubiquitin. At low charge states (+1 to +6), loss of NH3 or H2O from the protonated precursor and directed cleavage at aspartic acid residues was observed. At intermediate charge states, (+7, +8, and +9), extensive nonspecific fragmentation of the protein backbone was observed, with 50% sequence coverage obtained from the [M + 8H]8+ ion alone. At high charge states, (+10, +11, +12), the single dominant channel that was observed was the preferential fragmentation of a single proline residue. These data can be readily explained in terms of the current model for intramolecular proton mobilization, that is, the "mobile proton model", the mechanisms for amide bond dissociation developed for protonated peptides, as well as the structures of the multiply charged ions of ubiquitin in the gas phase, examined by ion mobility and hydrogen/deuterium exchange measurements.  相似文献   

16.
Electron capture dissociation (ECD) is a promising method for de novo sequencing proteins and peptides and for locating the positions of labile posttranslational modifications and binding sites of noncovalently bound species. We report the ECD of a synthetic peptide containing 10 alanine residues and 6 lysine residues uniformly distributed across the sequence. ECD of the (M + 2H)(2+) produces a limited range of c (c(7)-c(15)) and z (z(9)-z(15)) fragment ions, but ECD of higher charge states produces a wider range of c (c(2)-c(15)) and z (z(2)-z(6), z(9)-z(15)) ions. Fragmentation efficiency increases with increasing precursor charge state, and efficiencies up to 88% are achieved. Heating the (M + 2H)(2+) to 150 degrees C does not increase the observed range of ECD fragment ions, indicating that the limited products are due to backbone cleavages occurring near charges and not due to effects of tertiary structure. ECD of the (M + 2Li)(2+) and (M + 2Cs)(2+) produces di- and monometalated analogues of the same c and z ions observed from the (M + 2H)(2+), with the abundance of dimetalated fragment ions increasing with fragment ion mass, a result consistent with the metal cations being located near the peptide termini to minimize Coulombic repulsion. In stark contrast to the ECD results, collisional activation of cesiated dications overwhelmingly results in ejection of Cs(+). The abundance of cesiated fragment ions formed from ECD of the (M + Cs + Li)(2+) exceeds that of lithiated fragment ions by 10:1. ECD of the (M + H + Li)(2+) results in exclusively lithiated c and z ions, indicating an overwhelming preference for neutralization and cleavage at protonated sites over metalated sites. These results are consistent with preferential neutralization of the cation with the highest recombination energy.  相似文献   

17.
In this paper, we present the results of a detailed study using MALDI seamless postsource decay (sPSD) fragment ion analysis of all major glycerophospholipid (GPL) classes, cardiolipin (bisphosphatidylglycerol), and sphingomyelin, respectively. The matrix compound 2,4,6-trihydroxyacetophenon recently introduced for lipid analysis (Stübiger, G.; Belgacem O. Anal. Chem. 2007, 79, 3206-3213) was applied in conjunction with a high-resolution curved field reflectron analyzer allowing detection of the fragment ions without stepping the reflectron voltages (seamless PSD). This instrumental feature helps to define in a fast way the polar headgroups of the different GPL classes and gives information about the constituent fatty acid residues dependent on the type of adduct ion used. Our experiments demonstrate that fragment ions specifying the fatty acid composition of the lipid molecules could only be generated from cationized molecular ions (sodiated or lithiated). Additionally, information about the stereospecificity of the fatty acid residues on the glycerol backbone (sn-1, and -2 position) of particular GPLs could be obtained during sPSD analysis. In the case of phosphatidylcholine, significant fragmentation related to the loss of the acyl groups could only be observed from [M + Li](+) ions. Generally, alkali adduction (sodium and lithium) enhanced fragmentation of most lipid classes, particularly favoring fragment ions associated with the polar headgroups.  相似文献   

18.
We investigate the van der Waals interaction of D,L-Ala cyclopeptide nanotubes and various ions, ion-water clusters and C(60) fullerenes, using the Lennard-Jones potential and a continuum approach which assumes that the atoms are smeared over the peptide nanotube providing an average atomic density. Our results predict that Li(+), Na(+), Rb(+) and Cl(-) ions and ion-water clusters are accepted into peptide nanotubes of 8.5 ? internal diameter whereas the C(60) molecule is rejected. The model indicates that the C(60) molecule is accepted into peptide nanotubes of 13 ? internal diameter, suggesting that the interaction energy depends on the size of the molecule and the internal diameter of the peptide nanotube. This result may be useful for the design of peptide nanotubes for drug delivery applications. Further, we also find that the ions prefer a position inside the peptide ring where the energy is minimum. In contrast, Li(+)-water clusters prefer to be in the space between each peptide ring.  相似文献   

19.
This study focuses on the molecular level interpretation of the selective gas-phase cleavage at aspartic acid residues (Asp) in protonated peptides. A phi3P+CH2C(=O)group (phi = 2,4,6-trimethoxyphenyl) is attached to the N-terminal nitrogen of the selected peptides LDIFSDF and LDIFSDFR, via solid-phase synthesis, to "mimic" the tightly held charge of a protonated arginine (Arg) residue. Collision-induced dissociation in a quadrupole ion trap instrument and surface-induced dissociation in a dual quadrupole instrument were performed for electrospray-generated ions of the fixed-charge peptide derivatives. Selective cleavages at Asp-Xxx are observed for those ions with charge provided only by the fixed charge or for those with a fixed charge and one Arg plus one added proton. This supports a previously proposed mechanism which suggests that the cleavages at Asp-Xxx, initiated by the acidic hydrogen of the Asp residue, become significant when ionizing protons are strongly bound by Arg in the protonated peptides. It is clear that the fixed charge is indeed serving as a "mimic" of protonated Arg and that a protonated Arg side chain is not required to interact with the Asp to induce cleavage at Asp-Xxx. When the number of protons exceeds the number of Arg in a peptide containing Arg and Asp, nonselective cleavages occur. The fragmentation efficiency of the peptides is consistent with the idea that these nonselective cleavages are promoted by a mobile proton. The peptide with a fixed charge and one added proton, [phi3P+CH2C(=O)-LDIFSDF + H]2+, fragments much more efficiently than the corresponding peptide with a fixed charge, an Arg and one added proton, [phi3P+CH2C(=O)-LDIFSDFR + H]2+; both of these fragment more efficiently than the peptide with a fixed charge and no added proton, phi3P+CH2C(=O)-LDIFSDF. MS/MS/MS (i.e., MS3) experimental results for bn ions formed at Asp-Xxx from phi3P+CH2C(=O)-LDIFSDF and its H/D exchange derivative, phi3P+CH2C(=O)-LDIFSDF-d11, are consistent with the bn ions formed at Asp-Xxx having a succinic anhydride cyclic structure. MS/MS experiments were also carried out for phi3P+CH2C(=O)-AAAA, a peptide derivative containing active hydrogens only at amide nitrogens plus the C-terminus, and its active H/D exchange product, phi3P+CH2C(=O)-AAAA-d5. The results show that a hydrogen originally located at an amide nitrogen is transferred away in the formation of a cyclic charge remote b ion.  相似文献   

20.
The facilitated transfer of alkali metal cations (Li+, Na+, K+, Rb+, Cs+) by dibenzo-18-crown-6 (DB18C6) across the electrochemically polarizable interface between an aqueous solution (W) and a hydrophobic ionic liquid, N-octadecylisoquinolinium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate ([C18Iq][TFPB]), has been studied using cyclic voltammetry at the interface formed at the tip of a micropipet. In cyclic voltammograms (CVs), the current due to the facilitated transfer of the cations by DB18C6 from W to [C18Iq][TFPB] can be measured within the polarized potential window of the [C(18)Iq][TFPB]|W interface. The stoichiometry of the complexes in [C18Iq][TFPB] for Li+, Na+, K+, and Rb+ are found to be 1:1 while for the Cs+ transfer both 1:1 and 1:2 complexes are likely to be formed. The formation constants of the 1:1 complexes for Li+, Na+, K+, and Rb+ in [C18Iq][TFPB], , evaluated from CVs are log = 5.0, 7.0, 8.2, and 7.3, respectively. The value for K+ is 1 order of magnitude greater than that for Na+. This higher selectivity of DB18C6 to K+ over Na+ in [C18Iq][TFPB] compared with that in molecular solvents suggests that the RTIL provides a unique solvation environment for the complexations of DB18C6 with the ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号