首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为实现高速、高灵敏度、低成本的激光通信,优化改进一种新的InGaAs/InP单光子雪崩二极管(SPAD)以更好地使其应用于单个单光子探测器(SPD)探测的近红外激光通信系统。与上一代相比,优化各层结构的同时,在其中加入了介质-金属反射层并改进了双Zn扩散工艺。在1.25 GHz高频正弦门控(SWG)工作模式、225 K温度和6 V偏置下,所制备的InGaAs/InP SPAD实现了光子探测效率(PDE)为30%、暗计数率(DCR)为3 kHz和后脉冲概率(Pap)为2.4%的单光子性能。将基于高性能SPAD制备的自由运行负反馈雪崩二极管(NFAD)作为接收机,应用到已有实时激光通信系统中,实验得到了单个NFAD的激光通信性能参数。结果表明,在使用4进制脉冲相位调制(4PPM)方案中,在1 Mbit/s比特率条件下,单个InGaAs/InP NFAD具有1.1×10-5误码率和-69.6 dBm灵敏度。  相似文献   

2.
Nd:YAG连续激光诱导下InP的Zn掺杂   总被引:2,自引:0,他引:2  
Nd:YAG连续激光辐照在表面蒸有Zn薄膜的n-InP片上,用激光诱导的方法实现Zn在InP中掺杂。形成PN结。用电化学C-V方法和扫描电子显微镜对辐照后的样品进行分析研究,给出激光辐照功率、辐照时间等工艺参数对结深、浓度分布影响.在n-InP片表面得到受主浓度分布均匀、高掺杂(~1019cm-3)、浅结(~1μm)的P-InP。初步分析其掺杂机理是激光诱导下所形成的合金结过程。  相似文献   

3.
<正>2014年12月,中国电子科技集团公司第十一研究所的中长波红外固体激光技术研究团队,采用2μm波长脉冲固体激光器抽运磷锗锌晶体(Zn Ge P2)非线性频率变换的技术路线,在2μm波长激光抽运激光功率为95 W时,实现了最高平均功率10.8 W,中心波长8.08μm,脉冲重复频率5 k Hz,脉冲宽度30 ns的长波红外固体激光输出,这是目前为止,本课题组所知国际上公开报道的长波红外固体激光功率输出的最高记录。  相似文献   

4.
为了研究H62黄铜激光焊接时母材难以熔合和Zn元素蒸发而导致的多孔焊缝,采用峰值功率300W Nd:YAG激光焊接设备,对3mm厚的H62黄铜进行焊接试验.通过控制激光脉冲波形、试样拼接紧密程度、激光加工参数和使用脉冲能量负反馈技术,结果表明:在使用前置尖峰脉冲波形与合适的激光加工参数条件下,焊接接头横截面整体形貌良好,没有发现气孔、夹杂等焊接缺陷.最后对焊接接头进行金相组织和焊缝上Cu、Zn元素成分分析,发现焊缝表面稍有凹陷,焊缝与母材具有完全冶金结合,焊接接头热影响区很窄和焊缝中心几乎全为细小晶粒的特征.  相似文献   

5.
贾芳 《电子器件》2009,32(4):725-728
脉冲激光沉积技术(PLD)易于获得高质量的氧化物薄膜已成为一种重要的制备ZnO薄膜的技术.采用脉冲激光沉积(PLD)(KrF准分子激光器:波长248 nm,频率5 Hz,脉冲宽度20 ns)方法在氧气气氛中以高纯Zn(99.999%)为靶材、在单晶硅和石英衬底表而成功生长了ZnO薄膜.通过X射线衍射仪、表面轮廓仪、荧光光谱仪、紫外可见分光光度计对合成薄膜材料的晶体结构、厚度、光学性质等进行了研究,分析了激光能量变化对其性能的影响.实验结果表明我们使用PLD法可以制备出(002)结晶取向和透过率高于75%的ZnO薄膜,激光能量为450 mJ的ZnO薄膜的发射性能较好,但激光能量的增加不能改善薄膜的透光率.  相似文献   

6.
激光脉冲时域特性与探测器响应关系探讨   总被引:2,自引:1,他引:1  
针对激光与光电探测器两种相互作用方式,选择四种常见的激光脉冲波形,建立简单数学模型,计算了光电探测器接收到的激光脉冲能量和脉冲激光在探测器上的有效持续时间,并据此分析激光脉冲时域特性与光电探测器的响应关系.计算结果表明,不同的激光脉冲波形引起的光电探测器的响应会有差异,并且,相对较长的大能量激光脉冲波形可能在探测器中引起较好的作用效果.  相似文献   

7.
脉冲激光三角法测距将半导体脉冲激光技术和PSD器件技术的优点相结合,特别适合应用于激光近炸引信等近场探测领域。本文提出了“脉冲激光三角法”这一测距技术方案,使用脉冲激光二极管作为激光源,利用PSD器件在激光脉冲激励下的脉冲堆积现象,实现了脉冲激光二极管与PSD激光三角法测距的结合。文章最终完成了脉冲激光三角法测距系统原理样机的设计与联调,测距精度优于10cm.  相似文献   

8.
脉冲激光由于具有峰值功率高、脉冲宽度窄等特点,在激光致声、激光焊接等领域中得到了广泛应用。使用特殊波形的脉冲激光,可获得比单脉冲高斯激光更加优异的应用效果,因此脉冲激光波形调节方法具有重要的应用价值。针对这一需求,提出并实验验证了一种基于分光延时的脉冲激光波形调节方法。首先对脉冲激光分光延时叠加原理进行了理论分析,设计出基于两次分光的四脉冲分光延时叠加光路,确定了产生矩形、三角形、驼峰形和双峰形脉冲激光所需的分光比与延时。然后搭建了一套基于Nd∶YAG脉冲激光器的二倍频532 nm激光的四脉冲分光延时叠加实验装置,成功获得了矩形、三角形、驼峰形和双峰形等特殊波形的脉冲激光。  相似文献   

9.
实现了应用于神光Ⅱ装置中的高精度整形激光脉冲与激光探针同步方案。在该方案中,激光探针经硅光导开关进行光电转换之后作为激光脉冲整形单元的触发信号,使激光脉冲整形单元,输出与激光探针同步的整形激光脉冲。为了降低由于触发信号不稳定引起的时间晃动,在光电转换之前放大激光探针,以调整激光脉冲整形单元触发信号的幅度。在神光Ⅱ装置中实现了整形激光脉冲与激光探针小于4.5 ps(均方根)的时间同步精度。  相似文献   

10.
为了有效提高激光打孔的速率和激光能量的利用率,采用长脉冲激光和短脉冲激光空间叠加打孔的方法,对复合激光打孔的最佳匹配参量进行了理论和实验研究。建立复合激光打孔最佳匹配模型,以熔融物的产生和去除达到平衡为准则,理论计算得出长脉冲激光和短脉冲激光的最佳匹配参量和最佳匹配情况下的复合激光打孔速率。同时进行了毫秒脉冲和纳秒脉冲的Nd:YAG激光器复合作用于5mm的不锈钢板的打孔实验。结果表明,在实验中得到的最佳匹配参量下,复合激光打孔速率相比于毫秒脉冲激光单独打孔最大提高了3.3倍。实验和理论模型均证明了复合激光打孔在最佳匹配状态下,打孔速率达到最大,激光能量得到充分利用。  相似文献   

11.
Successful regrowth of semi-insulating (SI) InP: Fe by the hydride vapour phase epitaxy technique around reactive ion etched vertical mesas of laser grown on Zn dopedp-InP substrate is demonstrated. The device performance of the buried heterostructure laser is presented. The current confining property of the regrown SI-InP: Fe are good although it lies adjacent to InP: Zn.  相似文献   

12.
利用ns级InGaAs/InP PIN光电二极管和20MHz虚拟数字示波器测量了氙灯和Nd:YAG激光器在氙灯泵浦下发出的光脉冲波形.比较测得的波形,可以得出结论,每一个激光脉冲均呈现出典型的弛豫振荡过程,与理论分析基本一致[1].与模拟示波器对比,虚拟数字示波器的分辨率高,读数准确,波形可存储,且信息处理方便.  相似文献   

13.
InGaAs/InGaAlAs/InAlAs/InP separate-confinement hetero-structure-multiquantum-well (SCH-MQW) laser diodes have been fabricated by molecular-beam epitaxy (MBE), and room-temperature pulsed operation at 1.57 ?m has been achieved. This SCH-MQW laser is composed of InGaAs well layers, InGaAlAs quaternary barrier layers, and InAlAs and InP cladding layers.  相似文献   

14.
用LPE研制的室温连续工作的1.48μm单量子阱激光器   总被引:1,自引:0,他引:1  
利用液相外延(LPE)技术研制出室温连续工作的InGaAsP/InP分别限制单量子阶(SCH-SQW)双沟平面掩埋(DC-PBH)激光器。室温下,腔面未镀膜的激光器最低阈值电流为23mA(激光器腔长为200μm,CW,13℃)。激射波长为1.48μm,最高输出功率达18.8mW(L=200μm.CW,18℃)。脉冲输出峰值功率大于50mW(脉冲宽度1μs、频率1kHz),未见功率饱和。量子阱的阱宽为20nm[1].  相似文献   

15.
InAs/InP量子点激光器制备工艺研究   总被引:2,自引:2,他引:0  
报道了通过化学湿刻蚀制备窄脊条InAs/InP量子点激光器的方法。激光器脊条主要是由半导体材料InGaAs和InP构成,通过选择合适配比的H2SO4∶H2O2∶H2O和H3PO4∶HCl腐蚀溶液和InP的腐蚀方向,在室温下选择性地腐蚀了InGaAs和InP,获得了窄脊条宽为6μm的量子点激光器。此激光器能够在室温连续波模式下工作,激射波长在光纤通信重要窗口1.55μm,单面最大输出功率超过12mW。  相似文献   

16.
彭慰先  蒋占魁 《中国激光》2000,27(5):411-414
采用一台 Q开关 Nd:YAG脉冲激光器的四倍频输出 (2 6 6 nm )作为消融激光 ,用反射型飞行时间质谱仪分析探测由激光与靶相互作用产生的离子 ,从得到的质量谱研究激光与半导体材料的相互作用。报告了这种相互作用的阈值特性、离子产额、质量分辨率等与激光通量密度的关系 ,给出了典型 Al Ga As和 In P材料的激光消融微区质谱。 In P的离子质谱表明非金属元素磷的二聚物离子 P2 的离子峰总是占优势的。  相似文献   

17.
We have studied semi-insulating Fe:InP regrowth of etched mesa buried heterostruc-ture lasers by hydride vapor phase epitaxy. Type-sensitive staining and electron beam induced current photographs have shown that regions near the original etched mesa are p-type instead of semi-insulating in a number of our wafers. These regions begin and end on distinct crystal boundaries, indicating that thep-type conversion is not due to simple diffusion of Zn out of the laser base structure, but is associated with uncontrolled growth of {111}In crystal planes.  相似文献   

18.
脉冲激光沉积法制备ZnO基薄膜研究进展   总被引:6,自引:3,他引:6  
作为一种新型的Ⅱ-Ⅵ半导体材料,ZnO具有优良的光学和电学性能,在紫外光发射器件、自旋功能器件、气体探测器、表面声波器件等领域有着广阔的应用前景.首先介绍了ZnO材料和脉冲激光溅射法的一些相关内容,然后从材料制备角度着重阐述了目前利用脉冲激光沉积法(PLD)制备ZnO基薄膜的若干重要研究方向,例如p型掺杂、p-n结的制备、Mg掺杂、Cd掺杂和磁性离子掺杂等.  相似文献   

19.
The objective of this work is to study the incorporation process of Zn in InP and related ternary and quaternary layers for long wavelength laser applications in comparison with the alternative acceptor Mg. In InP above a critical concentration of (1–2)×1018 cm?3 a sudden onset of dopant diffusion during growth is observed for Zn and for Mg as well. This diffusion during growth can be markedly reduced by counter-doping with Si (Fermi level effect). Below the critical concentration Zn dopant profiles exhibit the same steep flanks as Mg dopant profiles suggesting the same low diffusion coefficients. However, Zn appears to be more suitable forp-type doping of InP, GaInAs and GaInAsP, because an accurate control of the dopant level in the epitaxial layers is easier to achieve with Zn than with Mg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号