首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Ann Sundstrm  Jos Rendn  Mikael Olsson 《Wear》2001,250(1-12):744-754
The wear behaviour of some low alloyed steels has been investigated using a laboratory impeller–tumbler wear test equipment in which the steel samples are worn by angular granite particles under combined impact/abrasion wear contact conditions. The wear of the steels was evaluated by weight loss of the steel samples while the wear mechanisms of the steels were investigated by post-test light optical microscopy (LOM), scanning electron microscopy and energy dispersive X-ray analysis. The worn steel surfaces display a very rough surface topography with pronounced craters and distinct grooves caused by high and low angle impacts, i.e. abrasive wear, respectively. Besides, fragments of embedded granite particles are frequently observed in the worn surface of the steels. The wear of the steels tends to decrease with increasing steel hardness. However, instead of using the bulk hardness value the hardness of the worn/plastically deformed surface layer should be used when modelling the wear resistance. Further, the wear resistance of the steels was found to be dependent on the microstructure and chemical composition. Steels with similar type of microstructure show a linear decrease in weight loss with decreasing grain size and increasing carbon content.  相似文献   

2.
Abrasive wear is receiving increased attention particularly as its economic importance is appreciated. Low alloy carbon steels are widely used in the heat treated condition to resist abrasion and, in particular, are used for digger teeth. Little information is available in the literature on field or service wear studies and it was necessary, therefore, to carry out field studies in parallel with a laboratory wear investigation.A particular feature of the field study is the realization that significant wear occurs by rubbing to produce smooth surfaces and surface transformation, as well as wear by cutting and micro-chipping.A laboratory investigation based upon two-body pin-on-disc testing has been used to investigate the wear of a wide range of experimental steels, a manganese steel and a commercial digger tooth steel for comparison. Wear is directly proportional to the load and inversely related to hardness, but not to sliding distance because of the degradation of the abrasive paper. Abrasion increases with harder abrasives and increased abrasive particle size.The analysis of these results, although important from a wear mechanism point of view, shows that there is currently a lack of direct correlation between the field and laboratory studies because of the different surface features developed. Further investigations are proceeding to improve this correlation.  相似文献   

3.
The nonlubricated sliding wear behavior of nano-yttria-dispersed and yttria-free duplex and ferritic stainless steel against a diamond tip was studied. The stainless steel samples were fabricated by a conventional powder metallurgy route in which nano-yttria-dispersed and yttria-free duplex and ferritic stainless steel powders were cold compacted and then conventionally sintered at either 1000, 1200, or 1400°C in an argon atmosphere. For comparison, another set of samples was sintered at 1000°C in a nitrogen atmosphere. The wear behavior of sintered stainless steel samples against a diamond indenter was investigated using a pin-on-disc apparatus at 10 and 20 N loads and at a constant speed of 0.0041 m/s. It is proposed that yttria-dispersed stainless steels showed higher wear resistance compared to yttria-free stainless steel due to their improved hardness and density. Stainless steel sintered in a nitrogen atmosphere exhibited better wear resistance than those sintered in an argon atmosphere due to the formation of hard and brittle Cr2N. The wear mechanisms of stainless steels against diamond were found to be mainly abrasive and oxidative. Semiquantitative analysis of the worn surfaces and wear debris confirmed the occurrence of oxidation processes during wear.  相似文献   

4.
P. Harlin  M. Olsson 《Wear》2009,267(9-10):1482-1489
The abrasive wear resistance of starch consolidated (SC) and super solidus liquid phase sintered (SLPS) M3/2 high speed steel (HSS) samples have been evaluated by a two-body micro-abrasion test (low stress abrasion), using 6 μm diamond abrasive particles, and a three-body abrasion test (high stress abrasion), using significantly larger abrasive particles of blast furnace slag (600 HV) and silicon carbide (2400 HV), respectively. In the tests a commercial powder metallurgical (PM) HSS was used as a reference material.The results show that the microstructure of the SC and SLPS HSS samples is strongly dependent on the sintering temperature used. With increasing temperature the microstructure ranges from a porous (5% porosity) relatively fine grained low temperature sintered microstructure to a fully dense relatively coarse grained high temperature sintered microstructure with eutectic carbides/carbide networks. However, despite the pronounced microstructural differences displayed by the as-sintered HSS microstructures these show a relatively high abrasive wear resistance, comparable with that of a HIPed HSS reference, both under low and high stress abrasion contact conditions. The characteristic features of the low and high temperature sintered microstructures, i.e. the pores and coarse eutectic carbides/carbide networks, only show a limited impact on the wear rate and the wear mode (dominant wear mechanism). The results obtained imply that near net shaped components manufactured by starch consolidation and super solidus liquid phase sintering might be of interest in tribological applications.  相似文献   

5.
Two commercial cold work tool steels, AISI D2 and O1, were heat treated in order to obtain the same hardness 700 HV (60 HRc) and were subsequently tested in three different modes of wear, namely in adhesion, three-body and two-body abrasion, by using pin-on-disk, dry sand/rubber wheel apparatus and pin abrasion on SiC, respectively. Even though AISI O1 and D2 steel are heat treated to the same hardness, they perform differently under the three modes of wear examined. The results show that the steel microstructures play the most important role in determining the wear properties. For relatively low sliding speeds AISI O1 steel performs up to 12 times better than AISI D2 steel in adhesive wear. For higher sliding speeds, however, this order is reversed due to oxidation taking place on the surface of the AISI D2 steel. The wear rate of both tool steels in three-body and two-body abrasion wear is proportional to the applied load. In three-body abrasive wear, AISI D2 exhibits a normalised wear rate about two times lower than the AISI O1 tool steel, and this is due to the presence of the plate-like hard carbides in its microstructure. Both tool steels perform 3–8 times better in three-body abrasive wear conditions than in two-body abrasive wear.  相似文献   

6.
Hardfaced martensitic stainless steel alloy was deposited on mild steel substrate by flux cored arc welding method. The slurry abrasion studies of weld-deposited hardfaced steel were performed using slurry abrasion test rig with 250–300 μm silica sand particles. The effect of weld compositional gradation on the abrasive wear resistance of hardfaced stainless steel at a distance of 0.6, 1.2, 2.4, 3.0 and 3.6 mm from the top surface was studied. The observed abrasion rates were rationalized in terms of mass loss, hardness and distance from the top surface i.e. diluted surfaces beneath the top surface. The abrasive wear mass loss increased with increasing distance beneath the top surface, which was attributed to the coarsening and morphology change in martensite phase. The results of the present work indicated change in morphology of martensite with increase in the distance beneath the top surface. The operating abrasive wear mechanisms involved ploughing, microcutting and indentation.  相似文献   

7.
R.B. Gundlach  J.L. Parks 《Wear》1978,46(1):97-108
The resistance to abrasive wear was determined for a series of alloyed white cast irons in a high stress abrasion test which utilizes a specimen in sliding contact with bonded abrasives. These were conducted on silicon carbide, alumina and two sizes of garnet abrasive.The results indicate that the hardness, or type, of abrasive used in the test significantly influenced the wear rate of white irons, i.e. the rate of wear increased with increasing hardness of the abrasive. Also, the results indicate that the type of abrasive used in the test was a significant factor in ranking white irons for resistance to high stress abrasion. When tested on silicon carbide or alumina abrasive, as-cast austenitic irons exhibited lower rates of wear than heat treated martensitic irons; when tested on garnet, an abrasive of lower hardness, those irons with martensitic matrix microstructures exhibited the same or less wear than irons with austenitic matrix microstructures. It was also evident that heat treated irons with martensitic matrix microstructures exhibited varying degrees of resistance to abrasive wear depending on cooling rates and alloy content.  相似文献   

8.
The wear behaviour of two railway wheel steels, ER8 and SUPERLOS®, was studied through pin-on-disc tests, and the results were correlated with those previously obtained with twin-disc tests. The work-hardening of the steels was investigated with Vickers hardness measurements, and the wear mechanisms were studied using scanning electron microscopy. ER8 discs showed higher wear resistance, lower work-hardening ability and less wear damage than SUPERLOS® ones, confirming the results of the twin-disc tests. Therefore, sliding pin-on-disc experiments are recommended as a simple laboratory technique that can be used as a screening method for wheel steel performance prior to more complex and more expensive tests. The damage in both steels was due to the concomitance of oxidative wear, abrasive wear and fatigue wear. Iron oxide formation protects the steels from severe wear, whereas its detachment causes abrasive wear; furthermore, surface fatigue cracks initiate and propagate leading to the detachment of material flakes.  相似文献   

9.
K. Elalem  D. Y. Li   《Wear》2001,250(1-12):59-65
The dry sand/rubber-wheel abrasion tester is widely used to evaluate the low-stress abrasion resistance of materials for the mining/mineral processing industry particularly for the oil sand mining industry. Since wear loss is usually proportional to the applied load, this test is often performed under a fixed load at a fixed sliding speed to rank materials. However, inaccurate or misleading information might be generated under an inadequate load. It has been observed that D2 tool steel exhibits very different responses to variations in the applied load. Above a certain load level, further increase in the applied load may lead to a decrease in wear loss of D2 steel. In order to understand this phenomenon, computer simulation was performed to investigate wear responses of several engineering materials, including D2 tool steel, stainless steel, Al 6061 and Cu 110, to variations in applied load under the dry sand/rubber-wheel abrasion condition. It was demonstrated that the decrease in wear loss of D2 tool steel with an increase in the applied load was attributed to failure of the abrasive sand. Wear losses of the materials with respect to the sliding speed were also investigated. The prediction from the simulation was compared to experimental observations.  相似文献   

10.
Larsson  P.  Axén  N.  Akdogan  G.  Ekström  T.  Gordeev  S. 《Tribology Letters》2004,16(1-2):59-64
A tribological study has been carried out on a new type of carbide-metal composite, in which the two phases form a continuous skeleton microstructure interwoven throughout the body. The composites' resistance to two-body abrasion is evaluated in a pin-on-drum set-up with diamond and SiC abrasive papers. Also sliding wear and friction tests with steel and alumina as counter materials were undertaken. The composites show promising tribological properties, comparable to those of established wear resistant materials. Scanning electron microscopy was used to study the worn surfaces. The implications of the skeleton microstructure on the abrasive wear resistance are discussed on the basis of a wear model for multiphase materials.  相似文献   

11.
The properties of boride layers on steels alloyed with chromium, molybdenum or vanadium are presented first. The properties considered are: chemical composition, phase composition, microstructure, thickness, hardness and roughness. The wear test results shown were obtained with different test rigs, so that the main wear mechanisms could be recognized. The results reveal that adhesion, abrasion and surface fatigue are strongly influenced by the solution of the elements of the differently alloyed steels in the boride layers, while tribooxidation is influenced to a minor extent  相似文献   

12.
A set of five material specimens have been tested on five abrasives, some of which are harder, some softer than the materials, using the dynamic abrasive wear tester. Characteristics of selected wear debris have been observed by sem and wear debris of 9Cr2Mo steel analysed by Mossbauer spectroscopy. The test results show three wear mechanisms operating during abrasion: microcutting, plougging deformation and brittle fragmentation. Different abrasives formed different constituents of wear debris due to dissimilar wear conditions. Softer abrasive tended to form more ploughing debris, although some typical microcutting chips were produced. Crushing strength of abrasive may be an important factor in addition to hardness of abrasive. The microstructure of 9Cr2Mo steel wear debris has been changed by abrasion heat; this temperature could be estimated by Mossbauer spectroscopy.  相似文献   

13.
The low-stress three body abrasion behaviour of a range of steels was investigated. The tests were carried out in a rubber wheel tester (according to ASTM G65-94, reapproved in 2000) at room temperature. The abrasive particles used were angular alumina particles of four different sizes. The results showed that, in general, the smaller particles (50 and 125 μm average size) caused more damage. With these particles, observations of surface morphology indicated a more intense cutting and ploughing action, leading to more damage, whereas bigger particles i.e. larger 250 and 560 μm particles produced less damage, and their action involved more plastic deformation type wear. The 304 SS had a lower abrasion resistance than the 310 SS. For the austentic and ferritic steels the subsurface deformation was larger for impact with the coarser particles. Variations in substrate hardness had no effect on the abrasive behaviour observed. On the whole, the hardest steel (mild steel in martensitic condition) showed the higher extent of damage, irrespective of particle size.  相似文献   

14.
The abrasive wear behaviors of aluminum alloyed Hadfield steel at the high and low stress wear conditions were studied and compared with non-Al alloyed Hadfield steel. The wear tests were done with the pin on disc method using the abrasive wheel. The main parameters such as alloy compositions, normal load, sliding speed and sliding distance were evaluated. It is shown that at the low stress condition, the aluminum alloyed Hadfield steel has higher wear resistance than the non-Al alloyed Hadfield steel. But at the high stress wear conditions, the non-Al alloyed Hadfield steel is more resistant than the Al alloyed.  相似文献   

15.
Wear testing equipment and tests used in research laboratories are often miniature or simplified versions of real applications. For example standardized ASTM dry sand rubber wheel abrasion test G 65 and pin abrasion test G 132 are widely used to study materials’ abrasion wear resistance. The test results, however, do not always correlate too well with the results obtained from real wear conditions. One reason for this is, for example, that in the crushing applications of mining industry the abrasive size is usually much larger than that used in the laboratory wear tests. To study the abrasive wear caused by larger size gravel, new three-body abrasion test equipment was therefore constructed. The equipment uses the pin-on-disk principle with free abrasive particles of sizes up to 10 mm. During the test the pin is repeatedly pressed against a fixed amount of abrasive that is rotating with the disk having confining walls. As the pin is prevented from touching the counterbody, only the abrasive acts as the wearing agent.Three steels of different hardnesses were cross-tested as pin–disk pairs and as pins against a rubber disk using three igneous rock gravels with different crushability properties as abrasives. The wear was measured as mass loss from both the pin and the disk, and the rock comminution was measured by sieving. The results indicate that the mechanism of wear is greatly affected by the hardness of the counterbody. When using large size abrasives, the rate of comminution is also a very important factor that can significantly affect the wear test results.  相似文献   

16.
G.B. Stachowiak 《Wear》2004,256(6):600-607
Three-body abrasive wear resistance of mild steel and 27%Cr white cast iron was investigated using a ball-cratering test. Glass beads, silica sand, quartz and alumina abrasive particles with sizes larger than 200 μm were used to make slurries. It was found that the wear rates of mild steel increased with sliding time for all abrasive particles tested, while the wear rates of 27%Cr white cast iron were almost constant with sliding time. This increase in the wear rates of mild steel was mainly due to the gradual increase in ball surface roughness with testing time. Abrasive particles with higher angularity caused higher ball surface roughness. Soft mild steel was more affected by this ball surface roughness changes than the hard white cast iron. Generally, three-body rolling wear dominated. The contribution of two-body grooving wear increased when the ball roughness was significant. The morphological features of the wear scars depended on the shape of the abrasive particles and also on the hardness and microstructure of the wear material. Angular particles generated rough surfaces similar to those usually observed in high angle erosion tests. Rounded particles generated smoother surfaces with the middle area of the wear craters having similar morphology to those observed in low angle erosion.  相似文献   

17.
Friction and wear of alumina sliding against two chromium steels and against itself under dry and wet conditions are reported. Tests were performed using a pin-on-disc device. Loads and speeds, respectively, ranged from 5 to 300 N and 3 to 10.7 m/s. The evolution of the friction coefficient and wear rates point to the existence of a load threshold correlated with the sudden degradation of the ceramic under both wet and dry conditions. Below the threshold, the ceramic remains undamaged while steels exhibit a moderate wear rate. Worn surfaces show thickening metallic transfer on the ceramic and abrasion grooves on steels. Above the threshold, the ceramic damage is induced by grain boundaries failure which leads to a coarse roughness and the release of abrasive particles. The circulation of the latter increases the steel wear and reduces the metallic transfer thickness on the ceramic. Water in the contact zone significantly lowers the threshold value and the friction coefficient value. The mechanical, thermal and chemical effects of load, speed and water are discussed with regard to damage undergone by the sliding bodies. A particular emphasis is focused on the calculation of average and maximum temperatures occuring in the contact area in relation to ceramic grain boundary damage.  相似文献   

18.
L.C. Jones  R.J. Llewellyn 《Wear》2009,267(11):2010-2017
The multiplicity of harsh environments in mining, processing and transporting ore and related waste, cause severe wear, extremely high maintenance costs and lost production.Elevated temperature processing is one of the conditions that influence the performance of possible materials of construction. This takes the forms of reduced hardness and strength, deleterious changes in the structure and properties of materials during protracted exposure and increased oxidation and corrosion.Drag chain conveying of hot solids e.g. in smelting, typically results in three-body sliding abrasion and adhesive wear of connecting pins and hole surfaces in link assemblies and of moving paddles that impel the particulates in enclosed channels. Selected materials have been assessed for this type of service under reciprocating sliding abrasion contact conditions using an adapted Cameron-Plint TE77 wear rig at 20 °C and 350 °C. These include the current carburised low alloy steel, other steels, Cr white irons and Co-based alloys in bulk, overlay and surface treated forms.Examination of wear scars, using scanning electron microscopy, identified the main wear mechanisms affecting the highly resistant powder metallurgical (PM) tool steels and HVOF coating as micro-scratching and as indentation leading to micro-fracture. Materials with lowest resistance displayed evidence of significant material removal by micro-ploughing. The formation of oxide layers on some samples during testing appeared to be beneficial.  相似文献   

19.
Ball-cratering abrasion tests with large abrasive particles   总被引:1,自引:0,他引:1  
The application of a ball-cratering method to test three-body abrasive wear of bulk materials in the presence of large abrasive particles has been investigated. Four types of abrasive particles of different sharpness were used to make slurries: glass beads, silica sand, crushed quartz and alumina. All the particles were sieved to a size of 250–300 μm. Two common industrial materials, mild steel and 27% Cr white cast iron, were used as wear samples. Wear rates of metallic samples were determined and the worn surfaces were examined by optical microscopy, SEM and Talysurf profilometry.It was found that the surface roughness of the ball significantly affects the wear rates and the wear mechanisms of the metallic samples. The surface roughness of the ball steadily increased with testing time and was mainly affected by the angularity of abrasive particles. More angular particles generated higher ball surface roughness. It was found that the gradual increase in the ball surface roughness was responsible for non-linearity of wear rates with sliding time. The increasing depth of the wear craters also contributed to this non-linearity as deeper craters facilitate particle entrainment. Three-body rolling wear dominated when the ball was smooth and the contribution of two-body grooving wear increased with increasing the ball roughness. Softer mild steel samples were more affected by the ball roughness changes than the harder white cast iron samples. Wear surface morphology was also affected by the angularity of particles and by the material properties of wear samples. Particle fracture was found in all four groups of abrasives and the angularity of the particles was slightly altered. Therefore, the ball-cratering test, under the testing conditions used, can be considered as a high-stress abrasion test.  相似文献   

20.
A ball cratering test has been used to investigate the abrasive wear of high speed steels with different volume fraction and size of primary carbides. Three different abrasives, SiC, Al2O3 and ZrO2 were used. Wear mechanisms were investigated by scanning electron microscopy (SEM). A good correlation between the hardness of the abrasives and the abrasive wear coefficient was found. Higher abrasive wear resistance was determined for steels containing coarser primary carbides compared to those without or with smaller carbides. The most pronounced difference in abrasive wear resistance was found for Al2O3 abrasives. This indicates that in ball cratering the abrasive medium has to be chosen properly, i.e. with a hardness adjusted to those of both primary carbides and martensitic matrix, to obtain results suitable to rank high speed steels with respect to abrasion resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号