首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Antimony-containing alloys have the lowest energy bandgaps of the conventional III-V semiconductors. Organometallic vapor phase epitaxy (OMVPE) has proven to be an effective and convenient technique for the production of the antimony alloys, normally using trimethylantimony (TMSb) as the antimony source. However, TMSb has several problems: (a) it decomposes at relatively high temperatures due to the strong CH3-Sb bond, and (b) its use results in carbon contamination from the active methyl radicals, especially for the growth of aluminum-containing alloys. Recently, tertiarybutyldimethylantimony (TBDMSb) has been successfully used to grow high quality InSb epitaxial layers at temperatures as low as 325°C with low V:III ratios. This paper reports the use of TBDMSb to grow GaSb layers at temperatures from 500° to 650°C. Group V:III ratios close to unity are required for good surface morphologies. The optimum V:III ratio decreases slightly as the growth temperature is lowered due to the incomplete decomposition of trimethylgallium (TMGa). The growth efficiency is about 1 × 104 μm/mole, indicating that there are no significant parasitic reactions between TMGa and TBDMSb. The as-grown layers are p-type. The background carrier concentration is nearly independent of growth temperature. Low temperature (10K) photoluminescence (PL) intensities are also nearly independent of temperature in this range. The PL spectra consist of two peaks, a bound exciton peak at about 792 meV and a native acceptor complex (VGa, GaSb) peak at about 775 meV. At every growth temperature, the ratio of the PL intensity of the bound exiton peak to the native acceptor peak is always higher for samples grown using optimum conditions. The results show that TBDMSb can be used for the OMVPE growth of antimony-containing materials over a wide range of growth temperature.  相似文献   

2.
Compositionally uniform Ga1-xInxAs epitaxial layers with 0 ≤ x ≤ 0.2 5 have been grown by organometallic VPE on ◃100▹ GaAs substrates. Compositional uniformities of ±0.25 InAs percentage and ±5% thickness over a 3-cm long wafer have been achieved and are essentially independent of small changes in reactor geometry such as the angle of the susceptor tilt or wafer position on the susceptor. Growth has also been demonstrated at x = 0.52. The Ga1-xInxAs is grown using trimethylgallium (TMGa), triethylindium (TEIn) or trimethylindium (TMIn), and trimethylarsenic (TMAs). The use of TMAs eliminates the roomtemperature gas-phase reaction between AsH3 and either TEIn or TMIn, and allows one atmospnere pressure growth conditions to be used without any special mixing arrangements in the reactor. The comparative effects of using TEIn or TMIn as the In source are discussed in terms of crystal quality. Data on crystal composition as a function of gas phase composition and growth rate as a function of composition are presented, and n doping and carrier mobilities and p doping of Ga.80In.20As ars characterized. The vapor pressure of TMIn at 0°C is determined to be 0.21 mmHg.  相似文献   

3.
AlxGa1−xSb films in the regime 0×0.25 have been grown by metalorganic chemical vapor deposition on GaAs and GaSb substrates using TMAl, TMGa, and TMSb precursors. We report growth conditions and film properties, including the effect of V/III ratio and growth temperature on electrical and optical properties. Growth temperatures in the range of 520°C and 680°C and V/III ratios from 1 to 5 have been investigated. All epilayers grown exhibit p-type behavior. The mobility decreases and the carrier concentration increases sharply when a small amount of Al is incorporated into GaSb. The sharp cutoff and Fabry-Perot oscillations of the transmission spectra of the AlGaSb layers confirm the high quality of the films. The principle photoluminescence features observed are attributed to bound exciton and donor-acceptor transitions with FWHM comparable to the best values reported elsewhere.  相似文献   

4.
We have successfully grown bulk In0.53Ga0.47As on InP using tertiarybutylarsine (TBA), trimethylindium and trimethylgallium. The growth temperature was 602° and the V/III ratio ranged from 19 to 38. Net carrier concentrations were 2 – 4 × 1015 cm-3, n-type, with a peak 77 K mobility of 68,000 cm2/V. sec. Increasing compensation was observed in In0.53Ga0.47As grown at higher V/III ratios. PL spectra taken at 5 K revealed strong near bandgap emission at 0.81 eV—with the best sample having a FWHM of 2.5 meV. At lower energies, donor-acceptor pair transitions were evident. Strong and sharp 5 K PL emission was observed from InP/In0.53Ga0.47As/InP quantum wells grown with TBA.  相似文献   

5.
The surface step structure of Ga1−xInxAsySb1−y grown by organometallic vapor phase epitaxy on GaSb substrates has been studied by atomic force microscopy. Epilayers were grown at 525°C and 575°C on (001) GaSb substrates misoriented 2° toward (101) or 6° toward (1 1)B. For Ga0.88In0.12As0.1Sb0.9 grown at 575°C, the surface exhibits step-bunching on both types of substrates. When the composition is increased to Ga0.86In0.14As0.12Sb0.88, the periodic step structure breaks down and the surface becomes irregular. The deterioration of the step structure is a consequence of phase separation at the surface of the metastable GaInAsSb epilayer, which leads to the formation of GaAs- and InSb-rich regions. The photoluminescence (PL) of such layers show significant broadening due to carrier recombination in the lower energy gap InSb-rich quaternary regions. On the other hand, the surface of GaInAsSb epilayers grown at a lower temperature of 525°C is vicinal with steps heights of one to two monolayers. The PL FWHM values are considerably smaller for these layers. This improvement in material quality is related to smaller adatom lifetimes at the lower growth temperature. The importance of surface kinetics as it influences the step structure and thermodynamically driven phase separation is discussed.  相似文献   

6.
We have grown AlxIn1−xSb epitaxial layers by metalorganic chemical vapor deposition using tritertiarybutylaluminum (TTBAl), trimethylindium (TMIn), and triethylantimony (TESb) as sources in a high speed rotating disk reactor. Growth temperatures of 435 to 505°C at 200 Torr were investigated. The V/III ratio was varied from 1.6 to 7.2 and TTBAl/(TTBAl+TMIn) ratios of 0.26 to 0.82 were investigated. AlxIn1−xSb compositions from x=0.002 to 0.52 were grown with TTBAl/(TTBAl+TMIn) ratios of 0.62 to 0.82. Under these conditions, no Al was incorporated for TTBAl/(TTBAl+TMIn) ratios less than 0.62. Hall measurements of AlxIn1−xSb showed hole concentrations between 5×1016 cm−3 to 2 × 1017 cm−3 and mobilities of 24 to 91 cm2/Vs for not intentionally doped AlxIn1−xSb.  相似文献   

7.
Reflectivity spectra have been measured on LPE Ga1-xInxAs1-ySby, quaternary alloy layers, lattice-matched to InAs and GaSb substrates. The compositions studied were limited by a miscibility gap to the regionsx = 0,y - 1 (GaSb) tox ~ 0.2,y ~ 0.8 andx = 1,y = 0 (InAs) tox ~ 0.9,y ~ 0.1. The spectra were analysed to give values of carrier density and mobility to investigate Te doping. Fory ~ 0.8 layers werep-type as-grown,n-type conduction being obtained for Te concentrations in the melt above about 10-6 at.%. Electron mobility for low carrier densities was found to increase sharply with decreasingy. The lattice vibrational properties of the system were also investigated. Three phonon modes were observed in the composition range studied, with GaAs, InSb and mixed InAs/GaSb characteristics. Thus the behaviour of the system may be termed “three-mode” due to the degeneracy of the GaSb and InAs modes. The oscillator strengths of the observed modes are qualitatively as expected from a comparison with appropriate binary systems.  相似文献   

8.
Tertiarybutylphosphine was explored as a safer alternative to phosphine for the atmospheric pressure chemical vapor deposition of Ga0.52In0.48P on GaAs. For V/III ratios greater than or equal to 50 and growth temperatures between 630 and 700° C, the minority carrier diffusion length of Ga0.52In0.48P grown from t-butylphosphine, approached that of Ga0.52In0.48P grown from phosphine under similar conditions. Compared to deposition with phosphine, with t-butylphosphine the surface morphology was rougher, the carbon and sulfur contamination was greater, and the loss of indium by parasitic reaction was greater. The band gap of the Ga0.52In0.48P at fixed composition varied differently with V/III ratio.  相似文献   

9.
GaInAsSb and AlGaAsSb alloys have been grown by organometallic vapor phase epitaxy (OMVPE) using all organometallic sources, which include tritertiarybutylaluminum, triethylgallium, trimethylindium, tertiarybutylarsine (TBAs), and trimethylantimony. Excellent control of lattice-matching both alloys to GaSb substrates is achieved with TBAs. GaInAsSb/AlGaAsSb multiple quantum well (MQW) structures grown by OMVPE exhibit strong 4K photoluminescence with full width at half maximum of 10 meV, which is comparable to values reported for quantum well (QW) structures grown by molecular beam epitaxy. Furthermore, we have grown GaInAsSb/AlGaAsSb MQW diode lasers which consist of n- and p-doped Al0.59Ga0.41As0.05Sb0.95 cladding layers, Al0.28Ga0.72As0.02Sb0.98 confining layers, and four 15 nm thick Ga0.87In0.13As0.12Sb0.88 quantum wells with 20 nm thick Al0.28Ga0.72As0.02Sb0.98 barrier layers. These lasers, emitting at 2.1 μm, have exhibited room-temperature pulsed threshold current densities as low as 1.2 kA/cm2.  相似文献   

10.
High quality GaxIn1−xAs, lattice matched to InP, has been reproducibly grown by organometallic vapor phase epitaxy using trimethylgallium (TMGa), trimethylindium (TMIn), and AsH3 in an atmospheric pressure reactor with no observable adduct formation. For the first time, using TMIn, room temperature electron mobilities of 104 cm2/Vs and 77 K mobilities greater than 4 × 104 cm2/Vs have beep obtained. Residual donor doping densities in the low 1015 cm−3 range have been routinely obtained. Material with excellent morphology has been grown from 540 to 670 C with the highest quality material being obtained near 650 C. The 4 K photoluminescence (PL) peak due to carbon is not seen in the material grown at higher temperatures; however, it increases dramatically as the growth temperature is lowered. This increased carbon incorporation leads to a sharp drop in the electron mobility, which exhibits a T−0.5 behavior between 77 and 300 K. With optimum growth conditions, 4 K PL halfwidths of 4–5 meV are commonly observed. This high quality material is characterized by x-ray diffraction, PL, and Hall mobility measurements. Carbon and other impurity incorporation as a function of the growth parameters will be described.  相似文献   

11.
The effect of substrate misorientation on phase separation in Ga1−xInxAsySb1−y nominally lattice matched to GaSb is reported. The layers were grown at 575°C by organometallic vapor phase epitaxy on vicinal (001) GaSb substrates, miscut or (101). Ga1−xInxAsySb1−y (x ~ 0.1, ~ 0.09) layers, which have 300-K photoluminescence (PL) peak emission at ~2.1 μm, grow stepbunched and exhibit minimal phase separation. The full width at half maximum of 4-K PL spectra is slightly smaller at 7 meV for layers grown on substrates miscut toward compared to 9 meV for layers grown on substrates miscut toward and (101). Ga1−xInxAsySb1−y layers with higher alloy composition (0.16≤x≤0.19, 0.14≤y≤0.17), which have 300-K PL peak emission at ~2.4 μm, have significant phase separation. These layers are characterized by increased lattice constant variations and epitaxial tilt, broad PL spectra with significant band tailing, and strong contrast modulation in transmission electron microscopy. The degree of decomposition depends on substrate miscut direction: Ga1−xInxAsySb1−y layers grown on (001) substrates are more homogeneous than those grown on (001) and (001)2°→(101) substrates. The results are attributed to the smaller adatom diffusion length on substrates miscut toward .  相似文献   

12.
Effectively atomically flat interfaces over a macroscopic area (“(411)A super-flat interfaces”) were successfully achieved in In0.53Ga0.47As/In0.52Al0.48As quantum wells (QWs) grown on (411)A InP substrates by molecular beam epitaxy (MBE) at a substrate temperature of 570°C and V/III=6. Surface morphology of the In0.53Ga0.47As/In0.52Al0.48As QWs was smooth and featureless, while a rough surface of those simultaneously grown on a (100) InP substrate was observed. Photoluminescence (PL) linewidths at 4.2 K from the (411)A QWs with well width of 0.6–12 nm were 20–30 % narrower than those grown on a (100) InP substrate and also they are almost as narrow as each of split PL peaks for those of growth-interrupted QWs on a (100) InP substrate. In the case of the (411)A QWs, only one PL peak with very narrow linewidth was observed from each QW over a large distance (7 mm) on a wafer.  相似文献   

13.
Nearly isoperiodic solitary Ga1−x InxAsySb1−y /GaSb heterostructures, in which the composition of the solid solution should be found inside the region of spinodal decay (x⩽0.4), were grown by liquid-phase epitaxy from solution-melts enriched with antimony. On the basis of the results of a study of structural and luminescence properties of Ga1−x InxAsySb1−y /GaSb heterostructures we have determined the main conditions ensuring reproducible growth of epitaxial layers, homogeneous in the composition of their solid solutions in the region where the existence of processes of spinodal and binodal decay have been theoretically predicted. It is shown that the magnitude and sign of the deformation which the layer undergoes during growth and also the thickness of the layer are the main factors influencing the properties of the growing GaInAsSb solid solutions in the spinodal-decay zone. Fiz. Tekh. Poluprovodn. 33, 1134–1136 (September 1999)  相似文献   

14.
In0.05Al0.10Ga0.85N epilayers and Al0.10Ga0.90N epilayers have been grown on bulk GaN single crystals and GaN templates by radio-frequency (RF) molecular-beam epitaxy (MBE). Photoluminescence (PL) spectra at different temperatures ranged from 8 to 300 K were measured for these epilayers. The decreasing rates of PL peak intensity of the In0.05Al0.10Ga0.85N epilayers were smaller than those of the Al0.10Ga0.90N epilayers. The fluctuations of emission intensities were not observed in the In0.05Al0.10Ga0.85N epilayers by cathodoluminescence observations at 77 K. Our results indicate that In-related effects exist in InAlGaN quaternary alloys on substrates with low-dislocation densities, however, expect that the localization effect related to In-segregation is weak.  相似文献   

15.
The reaction mechanisms for the pyrolysis of diisopropylantimonyhydride (DIPSbH, (C3H7)2SbH) alone and for the co-pyrolysis of DIPSbH and trimethylindium (TMIn, (CH3)3In) in D2 and H2 ambients have been studied in an isothermal flow-tube, “ersatz” reactor using mass spectrometry to analyze the reaction products. The rate limiting step in the pyrolysis of DIPSbH alone is the reductive coupling reaction, producing C3H8. Additional products are C3H6 and C6H14produced by disproportionation and recombination reactions, respectively, of C3H7 radicals produced during the second stage of DIPSbH pyrolysis. The mixture of DIPSbH with TMIn produces a nonvolatile adduct on the quartz walls immediately after mixing in the reactor even at room temperature. No products were evolved at room temperature. However, for reactor temperatures between 100 and 200°C, an alkane elimination reaction occurs, producing CH4. The remaining solid product is postulated to be [(CH3)2InSb(C3H7)2]n (n = 2 or 3). For temperatures greater than 200°C, the DIPSbH begins to pyrolyze independently. This temperature for the onset of DIPSbH pyrolysis is considerably above the temperature (125°C) at which pyrolysis begins for DIPSbH alone. This suggests that during co-pyrolysis formation of the adduct retards pyrolysis of DIPSbH. Apparently, dissociation of the adduct is necessary before the DIPSbH can pyrolyze independently. Co-pyrolysis of DIPSbH and TMIn between 250 and 375°C produces (C3H7)Sb(CH3)2 and (CH3)3Sb. Neither is found for the pyrolysis of DIPSbH alone. Considerably larger amounts of C2H6 are also detected at low temperatures (≤ 300°C). The ethane may come from the [(CH3)2InSb(C3H7)2]n via an intramolecular alkane elimination reaction. The high carbon contamination levels reported for InSb samples grown by OMVPE using these precursors at 300 and 325°C are postulated to be caused by the formation of (C3H7)Sb(CH3)2 during the co-pyrolysis of DIPSbH and TMIn, but not during the pyrolysis of each precursor alone.  相似文献   

16.
Photoluminescence (PL) has been observed at room temperature from a Ga0.96In0.04As0.11Sb0.89 quaternary solid solution for the first time. High-quality epitaxial layers of n-type (Te-doped) Ga0.96In0.04As0.11Sb0.89 with low In content were grown by liquid phase epitaxy (LPE) lattice-matched to InAs(100) substrates from a Ga-rich melt. The PL properties of the material were investigated over a wide temperature range, and the principal radiative transitions were identified. In the temperature range <150 K, donor-acceptor recombination involving the first and second ionization state of native antisite defects was the dominant radiative-recombination process, whereas interband recombination was found to dominate at room temperature.  相似文献   

17.
Photoluminescence of InxGa1-xAs-GaAs strained-layer superlattices (SLS's) grown by molecular beam epitaxy (MBE) is investigated. Highly strained SLS's composed of layers differing in their bulk lattice constants by as much as 2.7% are examined over the temperature range 20K-300K. Photoluminescence (PL) spectra for several In0.28Ga0.72AsGaAs SLS's are presented, providing data relating effective band gap and PL intensity to temperature and layer thickness. These data suggest a critical (maximum) alloy layer thickness for optical quality material in the range of 80å-100å for crystals with x = 0.28 and an InxGa1-xAs/GaAs layer thickness ratio of Lz/LB = 1.3. Results of PL experiments on In0.38Ga0 62As-GaAs SLS's are also presented, and the effects of lattice misfit at the SLS/substrate interface upon the optical quality of these SLS's is examined.  相似文献   

18.
In this paper, we report the effect of using a group-V residual source evacuation (RSE) time on the interfaces of InGaAs/lnGaAsP quantum wells (QWs) grown by gas-source molecular beam epitaxy. High-resolution x-ray rocking curve and low-temperature photoluminescence (PL) were used to characterize the material quality. By optimizing the RSE time, a PL line width at 15K as narrow as 6.6 meV is observed from a 2 nm wide single QW, which is as good as or better than what has been reported for this material system. Very sharp and distinct satellite peaks as well as Pendellosung fringes are observed in the x-ray rocking curves of InxGa1−xAs/InxGa1−xASyP1−y multiple QWs, indicating good crystalline quality, lateral uniformity, and vertical periodicity. Theoretical considerations of the PL linewidths of InxGa1−xAs/InxGa1−xASyP1−y single QWs show that for QW structures grown with the optimized RSE time, the PL linewidth is mainly due to alloy scattering, whereas the contribution from interface roughness is small, indicating a good interface control.  相似文献   

19.
The growth by liquid-phase epitaxy of InAs1−x Sb x (x = 0.08-0.16) on GaSb was accomplished by using melts of constant arsenic concentration x As L = 0.014. The study of the influence of the degree of supercooling ΔT on the crystal growth was investigated. The strong tendency of the In-As-Sb liquid to dissolve the GaSb substrate was resolved by using high ΔT (20-30° C) for layers having a positive lattice-mismatch Δa/a more than 1.5 x 10−3. As positive lattice-mismatch becomes smaller, a larger supersaturation is required to control the substrate dissolution. But owing to the bulk nucleation which restricts the supercooling ΔT at values near 30° C, the growth of epitaxial layers with small lattice-mismatch (until - 5 × 10−4) was achieved only from time to time. It was observed that an increase of ΔT increases the concentration of antimony in the epilayers and hence leads to the lattice-mismatch. The dislocation etch pit density was found to be only dependent on the lattice-mismatch. The thickness of the grown layers is proportional to ΔT xt 1/2 with a factorK = 0.025 μm . °C−2 . s−1/2  相似文献   

20.
Ga1-x}Inx}As epitaxial layers have been deposited on GaAs substrates using the technique of organometallic pyrolysis (metalorganic chemical vapour deposition). The deposition was performed in a laminar flow, resistively heated, reactor. Both n and p-type (1017}-1018} carriers/cm3}) epitaxial layers, several microns thick,were prepared, with values of x in the range 0 ≤x ≤0.3. Epitaxial layer characterisation was carried out using conventional electrical, optical and x-ray techniques. Restricted emitting area (50–75 μm diameter) zinc-diffused LED’s were prepared in ungraded epitaxial layers with emission spectral peaks in the range 0.9 —1.15 ym. External quantum efficiencies of these devices decreased rapidly with increasing x, from∼0.4% for GaAs LED’s to∼0.02% for Gao.0.75}In0.25}As LED’s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号