首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了改善锂电隔膜的亲液性和耐热性,本研究采用聚苯醚树脂为成膜材料,利用相转化法制备了微孔锂电隔膜,通过膜形貌和结构表征、亲液性和耐热性测试对聚苯醚隔膜的基本性能进行研究,并将该隔膜装配成锂电池进行电化学性能表征。结果表明,聚苯醚隔膜显示出发达的三维孔道结构,孔隙率达到68%,约为传统聚烯烃膜的1.5倍;材料的良好亲液性和高孔隙率结构改善了聚苯醚隔膜的吸液性,其吸液率达到325%;该隔膜在160℃、60min的热处理条件下未发生明显的热收缩。相对于市售聚乙烯隔膜,聚苯醚微孔隔膜所装配锂离子电池显示出更优的循环性能和倍率性能。  相似文献   

2.
针对传统聚烯烃类锂离子电池隔膜的耐温性差和电解液亲和性差的问题,本实验以微孔沸石纳米粒子和聚偏氟乙烯树脂(PVDF)为主要原料,通过相转化法制备了综合性能优异的沸石/PVDF复合锂电隔膜。结果表明:与商用聚乙烯(PE)膜相比,所制备的沸石/PVDF复合隔膜具有更加发达的孔道结构,其孔隙率超过70%,约为PE膜的2倍。沸石/PVDF复合膜的耐高温性和电解液润湿性明显优于PE膜和纯PVDF膜,经过160℃、0.5h的高温处理后,复合膜的热收缩率仅为5%,而PE膜已完全融化,收缩率达到100%,PVDF膜收缩率超过50%;沸石/PVDF复合膜的电解液接触角仅为7.4°,而PE膜和PVDF膜的接触角高达42.5°和31.7°。受益于丰富的孔道结构和良好的电解液吸收/保持能力,沸石/PVDF复合膜所装配锂离子电池的倍率放电容量高于PE膜,同时,该复合膜装配电池的循环性能也优于传统聚乙烃隔膜。  相似文献   

3.
为了充分利用纳米纤维膜的多孔特性,同时克服其低机械强度的缺陷,以聚丙烯腈(PAN)为主要原料,采用静电纺丝法在石墨电极表面制备PAN纳米纤维膜,形成隔膜-电极一体化结构单元(SAA),并对SAA的孔道结构、力学性能、电解液性能、热尺寸稳定性及电池性能进行系统研究.结果表明:SAA中PAN隔膜与石墨电极的粗糙表面结合紧密,PAN隔膜呈现出发达的孔道结构,电解液亲和性良好;在150℃热处理0.5 h,SAA表面隔膜的热收缩率小于2%,显著优于市售聚烯烃隔膜.基于良好的理化特性,SAA装配的钴酸锂全电池表现出优异的循环容量和倍率容量保持性,如在0.2 C下,经历200次循环后电池的放电容量保持率为98%,在32 C下电池的放电容量为0.5 C下的44.3%.因此,电极表面直接制备纳米纤维膜可形成完整的隔膜-电极一体化单元,在充分发挥纳米纤维膜优势的同时,可优化电极与隔膜的界面相容性、改善电池的充放电性能,并能够提高电池的装配效率.  相似文献   

4.
采用同轴静电纺丝技术,以聚偏氟乙烯-六氟丙烯(PVDF-HFP)为壳层,醋酸纤维素(CA)为芯层,制备高效CA/PVDF-HFP复合纳米纤维膜,然后采用0.05mol/L的LiOH溶液对复合纳米纤维膜进行水解,得到纤维素/PVDFHFP复合纤维膜。分别采用差示扫描量热法、扫描电镜、透射电镜、接触角测量仪以及电化学工作站等对样品的性能进行了表征。结果表明:所得复合纳米纤维为壳核结构,并且其热稳定性好、孔隙率高、对电解液亲和性优良,将其用作锂离子电池隔膜,隔膜与锂电极之间的界面电阻低,因此可以推断,该复合纤维膜在锂离子电池隔膜领域的应用前景广泛。  相似文献   

5.
采用静电纺丝技术制备了聚芳醚砜酮(PPESK)纤维膜用作锂离子电池隔膜,并对PPESK纤维膜进行热处理以提高隔膜的拉伸强度和弹性模量,经320℃热处理后的隔膜纤维之间的黏结作用有效增强,隔膜的拉伸强度提高至19.8MPa。通过扫描电镜观测、差示扫描量热分析、交流阻抗测试和充放电测试等手段表征了PPESK隔膜的表面形貌、热稳定性能、电化学性能和相应的电池充放电循环性能。实验结果表明,热处理PPESK隔膜显示出良好的电解液吸收性能和热稳定性;电解液浸润的热处理PPESK隔膜相比Celgrad 2400PP隔膜具有更高的离子电导率(2.38mS/cm)和更低的界面电阻(170Ω);使用热处理PPESK隔膜装配的扣式电池展现出较高的充放电容量和稳定的循环性能。  相似文献   

6.
采用静电纺丝技术制备了聚芳醚砜酮(PPESK)纤维膜用作锂离子电池隔膜,并对PPESK纤维膜进行热处理以提高隔膜的拉伸强度和弹性模量,经320℃热处理后的隔膜纤维之间的黏结作用有效增强,隔膜的拉伸强度提高至19.8MPa。通过扫描电镜观测、差示扫描量热分析、交流阻抗测试和充放电测试等手段表征了PPESK隔膜的表面形貌、热稳定性能、电化学性能和相应的电池充放电循环性能。实验结果表明,热处理PPESK隔膜显示出良好的电解液吸收性能和热稳定性;电解液浸润的热处理PPESK隔膜相比Celgrad 2400PP隔膜具有更高的离子电导率(2.38mS/cm)和更低的界面电阻(170Ω);使用热处理PPESK隔膜装配的扣式电池展现出较高的充放电容量和稳定的循环性能。  相似文献   

7.
针对传统聚烯烃类锂电隔膜的耐温性差和电解液亲和性差的问题,以沸石粒子、硅溶胶和乙二胺四乙酸为主要原料,通过烧结工艺制备综合性能优异的沸石基锂离子电池隔膜。结果表明:与商用聚乙烯膜相比,本实验制备的沸石隔膜具有发达的孔道结构,其耐热性和电解液润湿性得到显著提升;经过160℃,0.5h的热处理后,沸石隔膜的热收缩率为0,而聚乙烯膜已经完全融化,沸石隔膜的电解液接触角接近0°,聚乙烯膜的接触角高达35°。受益于良好的孔道结构和电解液亲和性,沸石隔膜所装配电池在倍率放电容量和循环放电容量等方面均优于传统聚烯烃膜。  相似文献   

8.
以聚丙烯(PP)为基底膜,利用常温等离子体对其进行亲水性改性,环糊精作为分子筛涂层对其进行修饰,以其作为锂硫电池隔膜,可实现对多硫化物的有效阻碍,提高锂硫电池比容量及循环稳定性.对修饰隔膜的表观形貌、孔隙率、电解液亲和性、对多硫化物扩散的抑制效果,以及在锂硫电池中的电化学性能等进行了表征.结果显示,修饰隔膜的孔隙率达5...  相似文献   

9.
为提高锂离子电池隔膜的亲液性和耐温性,提高锂离子电池的综合性能,采用涂覆方法制备PVDF-无纺布复合隔膜,并对隔膜进行碱处理改性。结果表明,所制备复合膜表面具有发达的海绵状孔道结构,孔径约为2μm。改性后的隔膜对电解液具有良好的亲和性,电解液接触角由PP无纺布的140°降低至40°,吸液率由最初的70%提高到约300%,而复合膜自身的形貌和结构没有发生明显变化。改性后的隔膜对电解液具有更好的吸附作用,由于吸附更多的电解液,锂离子在膜层中的传递阻力更小。因此,改性后的复合膜装配的锂离子电池显示出优良的电池容量保持性。  相似文献   

10.
以氧化包覆改性的聚丙烯纤维和棉纤维为主要材料,采用湿法无纺布抄造的方法制备出了锂离子电池隔膜.研究了不同纤维配比对隔膜的抗张强度、孔隙率、吸液率、保液率和热收缩等性能的影响,并对锂离子电池隔膜的形貌和电导率进行了分析.结果表明,当棉纤维与改性聚丙烯纤维的质量配比为1∶1时,其抗张强度达到1.647 1kN/m,孔隙率为45.45%,吸液率和吸液高度分别为687.3%和39.2mm,相应的保液率为121.3%,得到了性能良好的锂离子电池隔膜.通过热收缩性能测试得出,加入棉纤维可以提高隔膜的热稳定性.SEM结果表明,改性聚丙烯纤维与棉纤维之间相互交织形成隔膜,所得隔膜在电解液中的电导率为2.39×10~(-3) S/cm.  相似文献   

11.
通过溶剂热合成法合成了平均粒径为69.4nm的钙钛矿型快锂离子导体-钛酸镧锂(LLTO),以聚偏氟乙烯-六氟丙烯(PVDF-HFP)为基体材料,掺杂不同含量的LLTO纳米颗粒,利用静电纺丝法制备PVDF-HFP/LLTO复合锂离子电池隔膜。考察分析了LLTO的含量对复合纳米纤维膜的表面形貌、热学性能及电化学性能的影响。研究结果表明,当LLTO的质量掺入量为15%时,该复合隔膜的电解液吸液率为249%,可达到商业隔膜(140%)的1.8倍,离子电导率达2.483×10~(-3)mS/cm;组装成电池后,首次放电比容量高达213mAh/g,显示出优异的电化学性能。  相似文献   

12.
以高耐热、高强度的聚醚酰亚胺(PEI)为芯层材料,以电解液亲和性和界面稳定性优良的聚偏氟乙烯(PVDF)为壳层材料,构建了一种具有同轴结构的大倍率、高耐热PEI-PVDF纳米纤维锂离子电池隔膜。通过SEM、TEM、TGA、电化学工作站、电池测试系统对PEI-PVDF同轴隔膜的微观形貌和性能进行测试与表征。结果表明:PEI-PVDF同轴纤维具有清晰的芯壳结构,与商业隔膜相比,PEI-PVDF同轴隔膜具有优异的热稳定性,在180℃下处理2 h,尺寸稳定并未发生热收缩;吸液率达到520%;电化学稳定性优异,电化学窗口达到5.0 V;离子电导率达到2.3 mS·cm-1;采用PEI-PVDF隔膜组装的锂离子电池在8 C的放电流下放电比容量仍能达到107 mAh·g-1,再回到0.2 C时恢复到原始比容量的95.4%,且电池在1 C电流下循环100次后容量保持率高达92.5%,PEI-PVDF隔膜表现出的大倍率、高耐热的特点说明该纤维膜是一种高功率、高安全的锂离子电池隔膜。   相似文献   

13.
采用勃姆石涂覆改性聚烯烃隔膜可以提升锂离子电池的隔膜热稳定性和电解液润湿性。本工作通过简单的水热法合成了平均粒径约为150 nm的勃姆石纳米片, 并采用刮涂法涂覆在聚乙烯(Polyethylene, PE)隔膜表面。该涂覆隔膜的孔隙率达到46.6%、吸液率为138.9%、离子电导率为0.47 mS/cm和锂离子迁移数为0.42, 使得该隔膜组装的锂离子电池具有较好的循环稳定性, 在1C(1C=150 mA/g)的电流密度下循环100次后仍能保留93.7%的放电比容量。同时, 勃姆石纳米片涂覆的隔膜的孔结构分布均匀, 优化了锂离子传输通量, 抑制了锂枝晶。  相似文献   

14.
采用熔体静电纺丝方法制备了茂金属线性低密度聚乙烯(mLLDPE)无纺纤维,并与聚偏氟乙烯(PVDF)溶液静电纺纳米纤维复合改性,成功制备出mLLDPE无纺纤维基锂电池隔膜。对该锂电池隔膜的孔隙率、热稳定性、充放电性能测试结果表明,该隔膜的孔隙率在54%~62%,首次放电比容量为70 mA·h/g,且循环稳定性良好,性能优于同等测试条件下的商业锂电池隔膜,可以应用于锂电池。  相似文献   

15.
通过添加不同质量分数的二氧化铈(CeO2)纳米粒子,利用相转化法制备锂离子电池隔膜PVDF-HFP/CeO2,所制得的膜通过红外光谱、交流阻抗、线性伏安扫描、首次充放电等方法对其进行性能测试。实验表明,添加CeO2的PVDF-HFP改性膜不但有效地提高了膜的吸液率、孔隙率、离子电导率,而且也同时也降低了聚合物链的结晶度。当CeO2添加量为8%时,有较好的性能,最大吸液率和孔隙率分别是178%和85%。室温下离子电导率为2.41×10-3 S/cm,电化学稳定窗口为4.67V,库仑效率达99.09%,满足锂离子电池隔膜的要求。  相似文献   

16.
随着锂离子电池性能的不断提升,对隔膜的性能要求也越来越严格。传统的锂离子电池隔膜材料还存在许多亟待解决的问题,特别是与电池的安全性能方面相关的问题,因此则需要制备具有更加稳定的耐高温和更好机械强度的高分子膜材料。聚对苯二甲酰对苯二胺(PPTA)由于其良好的亲水性、机械性能、耐热性和耐溶剂性,被认为是一类极具发展潜力的新型高性能隔膜材料。然而,如何将PPTA制成具有较高孔隙率的薄膜材料,是目前该领域面临的一大难题。从技术进步的角度,对锂离子电池隔膜制备技术的发展进行了详细的总结,并进行了技术对比分析PPTA电池隔膜的样式。研究表明,PPTA纳米纤维技术可以生产出厚度、孔隙率和电池性能都很好的锂离子电池的隔膜,表明其具有很好的应用潜力。  相似文献   

17.
为提高锂离子电池聚偏氟乙烯(PVDF)基聚合物隔膜对电解液体系的亲和性和导电性,引入聚甲基丙烯酸甲酯(PMMA)与聚偏氟乙烯(PVDF)进行共混,并添加有机增塑剂聚乙二醇PEG-400对PVDF基聚合物隔膜进行改性研究。采用先干法后湿法的相转化方法制备PVDF/PMMA/PEG型聚合物隔膜。通过对制备的聚合物隔膜的孔隙率、吸液率、微观形貌和电化学性能的分析研究,确定制膜的最佳工艺条件为聚合物占溶剂质量百分比为8%,PVDF∶PMMA=7∶3,增塑剂含量为30%,非溶剂含量为3%,反应温度为45℃,在此最佳工艺条件下制备的PVDF/PMMA/PEG隔膜的离子电导率可达2.848 m S/cm,对电解液体系的亲和性和导电性得到显著提高。  相似文献   

18.
采用湿法抄造和浸渍涂布工艺制备锂离子电池PET/TENCEL无纺布陶瓷隔膜,并采用孔径分析、热失重分析、热烘箱试验、扫描电镜和电池充放电循环性能检测等方式表征隔膜性能和电池性能。结果表明:当基材组份为50%(wt,质量分数,下同)PET纤维、30%TENCEL纤维和20%Al2O3粉,基材定量和陶瓷涂布量均为15g/m2时,所制备SP-1无纺布陶瓷隔膜的孔隙率和孔径分别为45.8%和0.07μm,且在210℃和1h条件下不发生热收缩;在1C充放电循环50次条件下,使用SP-1隔膜的锂离子电池容量保持率为83.4%,优于PE隔膜。  相似文献   

19.
采用静电纺丝方法制备聚偏氟乙烯(PVDF)锂离子电池隔膜,将其热压处理,探讨纤维直径、热压处理参数对隔膜力学性能、孔隙率和吸液率的影响。结果表明:在145℃、0.04MPa的条件下热压处理2h,直径约为800nm的隔膜拉伸强度为16.6MPa,孔隙率为18.9%,吸液率为260.7%;纤维直径在200~800nm的隔膜,直径越大,孔隙率越大,吸液率也越大。  相似文献   

20.
为了改善传统静电纺丝无纺布纤维膜力学性能较差的缺点,采用静电纺丝和静电喷雾技术相结合的方法,同时进行静电纺PPESK浓溶液和PVDF稀溶液,制备得到PPESK纤维/PVDF珠粒复合锂电池隔膜,并在160℃进行热压后处理。通过扫描电子显微镜、万能拉伸试验机、电化学工作站及充放电测试仪等表征复合锂电池隔膜的微观结构、力学性能、离子电导率和相应的电池充放电性能。结果表明,该复合隔膜具有良好的电解液润湿性,室温下离子电导率达到1.92mS·cm-1,PVDF珠粒均匀地分布在PPESK纤维中,珠粒经热压产生微熔融有效增强了纤维之间的黏结力,使复合膜的力学强度提高到13.2MPa。此外,使用复合隔膜装配的电池展现出较高的放电比容量和稳定的循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号