首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The purpose of this study was to develop a sublingual drug delivery spray formulation of scopolamine hydrobromide (L-(-)-hyoscine hydrobromide) and to determine the absolute bioavailability of scopolamine hydrobromide following sublingual delivery and to investigate the effect of a bioadhesive on the pharmacokinetic parameters of this drug in a rabbit model. Rabbits received a single scopolamine free base equivalent sublingual dose of 100 μg/kg and this was compared to intravenous administration of the drug. Blood samples were collected at different time points, and plasma scopolamine concentrations were determined using a new sensitive and specific LC/MS analytical method which utilized electrospray ionization detection. The bioavailability of sublingual scopolamine was determined by comparing plasma concentrations after sublingual spray delivery with equivalent intravenous doses. Following delivery of the sublingual spray dose, the average Cmax was 1024.4 ± 177 ng/mL, and the AUC value was found to be 61067.6 ± 9605 ng.min/mL. Relative to the intravenous dose (100% bioavailability), the bioavailability was 79.8% after sublingual spray administration. The addition of 2% chitosan, a bio-adhesive material and an absorption enhancer, showed a significant improvement in scopolamine sublingual absorption (p < 0.05) was observed. Considering the limitations of delivering scopolamine orally or transdermally to patients who experience motion sickness, the sublingual route of administration using a spray delivery dosage form, is a potential alternative modality for the prevention of nausea and vomiting associated with motion sickness.  相似文献   

2.
ABSTRACT

In this study, the effect of drug loading on the nasal absorption of insulin was determined. Human insulin was loaded into different drug carriers by two methods: supercritical fluid processing and freeze-drying. The powder formulations were characterized and then evaluated after nasal administration to alloxan induced diabetic rabbits at a dose of 5U/kg and 7.5U/kg. The blood glucose levels and serum insulin levels were monitored for five hours after administration of insulin formulations. The drug carriers evaluated were: ammonium glycyrrhizinate (AG), polyacrylic acid (PAA), cross-linked polyacrylic acid (CPAA), polyethylene oxide (PEO) and chitosan (CHTN).

Nasal administration of AG infused with insulin by carbon dioxide resulted in absolute bioavailability of 9.81% as compared to 2.86% observed with same powder loaded with insulin by freeze-drying. 8.05% bioavailability was obtained with PAA powder loaded with insulin by carbon dioxide as compared to much lower absorption seen with freeze-dried formulation. Similarly a two fold increase in absolute bioavailability was observed when carbon dioxide infused CPAA powder formulation was compared to the lyophilized powder. Nasal administration of PEO and CHTN loaded with insulin by carbon dioxide resulted in bioavailabilities of 1.55% and 1. 18% respectively.

The drug-loading process seems to have a significant effect on nasal absorption of insulin. The powders loaded with insulin by carbon dioxide infusion resulted in significantly higher absorption. The exact mechanism is still not known and a possible explanation for increased absorption may be due to improved stability of insulin in carbon dioxide infused formulations. Among the powders evaluated, polyacrylic acid and ammonium glycyrrhizinate prepared by carbon dioxide infusion as drug-loading method seem to offer good potential for development of nasal powder dosage forms for insulin.  相似文献   

3.
The purpose of this study was to develop a sublingual drug delivery spray formulation of scopolamine hydrobromide (L-(-)-hyoscine hydrobromide) and to determine the absolute bioavailability of scopolamine hydrobromide following sublingual delivery and to investigate the effect of a bioadhesive on the pharmacokinetic parameters of this drug in a rabbit model. Rabbits received a single scopolamine free base equivalent sublingual dose of 100 microg/kg and this was compared to intravenous administration of the drug. Blood samples were collected at different time points, and plasma scopolamine concentrations were determined using a new sensitive and specific LC/MS analytical method which utilized electrospray ionization detection. The bioavailability of sublingual scopolamine was determined by comparing plasma concentrations after sublingual spray delivery with equivalent intravenous doses. Following delivery of the sublingual spray dose, the average Cmax was 1024.4+/-177 ng/mL, and the AUC value was found to be 61067.6+/-9605 ng.min/mL. Relative to the intravenous dose (100% bioavailability), the bioavailability was 79.8% after sublingual spray administration. The addition of 2% chitosan, a bio-adhesive material and an absorption enhancer, showed a significant improvement in scopolamine sublingual absorption (p<0.05) was observed. Considering the limitations of delivering scopolamine orally or transdermally to patients who experience motion sickness, the sublingual route of administration using a spray delivery dosage form, is a potential alternative modality for the prevention of nausea and vomiting associated with motion sickness.  相似文献   

4.
Abstract

Context: Brain disorders remain the world's leading cause of disability, and account for more hospitalizations and prolonged care than almost all other diseases combined. The majority of drugs, proteins and peptides do not readily permeate into brain due to the presence of the blood–brain barrier (BBB), thus impeding treatment of these conditions.

Objective: Attention has turned to developing novel and effective delivery systems to provide good bioavailability in the brain.

Methods: Intranasal administration is a non-invasive method of drug delivery that may bypass the BBB, allowing therapeutic substances direct access to the brain. However, intranasal administration produces quite low drug concentrations in the brain due limited nasal mucosal permeability and the harsh nasal cavity environment. Pre-clinical studies using encapsulation of drugs in nanoparticulate systems improved the nose to brain targeting and bioavailability in brain. However, the toxic effects of nanoparticles on brain function are unknown.

Result and conclusion: This review highlights the understanding of several brain diseases and the important pathophysiological mechanisms involved. The review discusses the role of nanotherapeutics in treating brain disorders via nose to brain delivery, the mechanisms of drug absorption across nasal mucosa to the brain, strategies to overcome the blood brain barrier, nanoformulation strategies for enhanced brain targeting via nasal route and neurotoxicity issues of nanoparticles.  相似文献   

5.
Abstract

Objectives: Development and evaluation of rapidly dissolving film for intra-oral administration of naftopidil.

Significance: Formulation of naftopidil in the form of rapidly dissolving buccal film can eliminate the dissolution problem of naftopidil and provide a greater chance for direct absorption into the systemic circulation bypassing the presystemic metabolism. This can improve the oral bioavailability. In addition, this film guarantees patient compliance and is suitable for geriatric patients.

Methods: Rapidly dissolving film utilized hydroxypropyl methylcellulose E5 and polyvinylpyrrolidone K30 as the main components. The drug was loaded in pure form or after co-grinding with citric and/or tartaric acid. A solution of naftopidil in plurol oleique, labrasol, and tween 80 self-microemulsifying drug delivery systems (SMEDDS) was also loaded. The interactions of the drug with the excipients were monitored using thermal analysis, Fourier transform infrared spectroscopy, and X-ray diffraction. Naftopidil dissolution was monitored and selected films were used to assess the bioavailability after buccal administration to rabbit. Unprocessed drug suspension was administered orally and used as a reference.

Results: Incorporation of naftopidil in the film developed a new crystalline structure. The crystallinity of drug was abolished in the presence of organic acids or SMEDDS. The rapidly dissolving films showed fast liberation of the drug irrespective to the composition. Those films enhanced the bioavailability of naftopidil compared to orally administered suspension with SMEDDS containing film being superior.

Conclusion: The study introduced rapidly dissolving buccal film for enhanced dissolution and bioavailability of naftopidil.  相似文献   

6.
Abstract

Objective: The purpose of this study was to prepare the positively charged chitosan (CS)- or hydroxypropyl trimethyl ammonium chloride chitosan (HACC)-modified solid lipid nanoparticles (SLNs) loading docetaxel (DTX), and to evaluate their properties in vitro and in vivo.

Methods: The DTX-loaded SLNs (DTX-SLNs) were prepared through an emulsion solvent evaporation method and further modified with CS or HACC (CS-DTX-SLNs or HACC-DTX-SLNs) via noncovalent interactions. The gastrointestinal (GI) stability, dissolution rate, physicochemical properties and cytotoxicities of SLNs were investigated. In addition, the GI mucosa irritation and oral bioavailability of SLNs were also evaluated in rats.

Results: The HACC-DTX-SLNs were highly stable in simulated gastric and intestinal fluids (SGF and SIF). By contrast, the CS-DTX-SLNs were less stable in SIF than in SGF. The drug dissolution remarkably increased when DTX was incorporated into the SLNs, which may be attributed to the change in the crystallinity of DTX and some molecular interactions that occurred between DTX and the carriers. The SLNs showed low toxicity in Caco-2 cells and no GI mucosa irritations were observed in rats. A 2.45-fold increase in the area under the curve of DTX was found in the HACC-DTX-SLN group compared with the DTX group after the modified SLNs were orally administered to rats. However, the oral absorption of DTX-SLN or CS-DTX-SLN group showed no significant difference compared with that of DTX group.

Conclusions: The positively charged HACC-DTX-SLNs with a stable particle size could provide the enhanced oral bioavailability of DTX in rats.  相似文献   

7.
Abstract

The aim of this work was to assess the performance of resin as an ocular delivery system. Timolol maleate (TM) was chosen as the model drug and an ion exchange resin (IER) as the carrier. The drug–resin complex was prepared using an oscillation method and then characterized regarding particle size, zeta potential, morphology, and drug content. After in vitro drug release study and corneal permeation study were performed, in vivo studies were performed in New Zealand albino rabbits using a suspension with particles sized 4.8?±?1.2?μm and drug loading at 43.00?±?0.09 %. The results indicate that drug released from the drug–resin ophthalmic suspension permeated the cornea and displayed a sustained-release behavior. Drug levels in the ocular tissues after administration of the drug–resin ophthalmic suspension were significantly higher than after treatment with an eye drop formulation but were lower in body tissues and in the plasma. In conclusion, resins have great potential as effective ocular drug delivery carriers to increase ocular bioavailability of timolol while simultaneously reducing systemic drug absorption.  相似文献   

8.
Objective: Olmesartan medoxomil (OLM) is an antihypertensive drug with low oral bioavailability (28%) resulting from poor aqueous solubility, presystemic metabolism and P-glycoprotein mediated efflux. The present investigation studies the role of lipid nanocarriers in enhancing the OLM bioavailability through oral delivery.

Materials and methods: Solid lipid nanoparticles (SLN) were prepared by solvent emulsion-evaporation method. Statistical tools like regression analysis and Pareto charts were used to detect the important factors effecting the formulations. Formulation and process parameters were then optimized using mean effect plot and contour plots. The formulations were characterized for particle size, size distribution, surface charge, percentage of drug entrapped in nanoparticles, drug–excipients interactions, powder X-ray diffraction analysis and drug release in vitro.

Results and discussion: The optimized formulation comprised glyceryl monostearate, soya phosphatidylcholine and Tween 80 as lipid, co-emulsifier and surfactant, respectively, with an average particle size of 100?nm, PDI 0.291, zeta potential of ?23.4?mV and 78% entrapment efficiency. Pharmacokinetic evaluation in male Sprague Dawley rats revealed 2.32-fold enhancement in relative bioavailability of drug from SLN when compared to that of OLM plain drug on oral administration.

Conclusion: In conclusion, SLN show promising approaches as a vehicle for oral delivery of drugs like OLM.  相似文献   

9.
Objective: Design chitosan based nanoparticles for tenofovir disoproxil fumarate (TDF) with the purpose of enhancing its oral absorption.

Significance: TDF is a prodrug that has limited intestinal absorption because of its susceptibility to gut wall esterases. Hence, design of chitosan based polymeric novel nanocarrier systems can protect TDF from getting metabolized and also enhance the oral absorption.

Methods: The nanoparticles were prepared using the ionic gelation technique. The factors impacting the particle size and entrapment efficiency of the nanoparticles were evaluated using design of experiments approach. The optimized nanoparticles were characterized and evaluated for their ability to protect TDF from esterase metabolism. The nanoparticles were then studied for the involvement of active transport in their uptake during the oral absorption process. Further, in vivo pharmacokinetic studies were carried out for the designed nanoparticles.

Results: The application of design of experiments in the optimization process was useful to determine the critical parameters and evaluate their interaction effects. The optimized nanoparticles had a particle size of 156?±?5?nm with an entrapment efficiency of 48.2?±?1%. The nanoparticles were well characterized and provided metabolic protection for TDF in the presence of intestinal esterases. The nanoparticles were able to increase the AUC of tenofovir by 380%. The active uptake mechanisms mainly involving clathrin-mediated uptake played a key role in increasing the oral absorption of tenofovir.

Conclusions: These results show the ability of the designed chitosan based nanoparticles in enhancing the oral absorption of TDF along the oral route by utilizing the active endocytic uptake pathways.  相似文献   

10.
The aim of this research is to develop novel chitosan nanoparticles including cyclodextrins complexes for docetaxel (DTX), evaluate the performance of nanoparticles which could enhance the oral permeability and bioavailability of DTX in vitro and in vivo. DTX/sulfobutylether-β-cyclodextrin inclusion complexes were made and it was the main ingredient to prepare the DTX/sulfobutylether-β-cyclodextrin/chitosan nanoparticles due to their promising physicochemical properties. DTX/sulfobutylether-β-cyclodextrin/chitosan nanoparticles were prepared by the ionic gelation of chitosan with tripolyphosphate in the presence of cyclodextrins. Results indicated that DTX/sulfobutylether-β-cyclodextrin inclusion complexes and docetaxel/sulfobutylether-β-cyclodextrin/chitosan nanoparticles both had good performances in the studies of release and the rat small intestinal absorption in vitro. DTX/sulfobutylether-β-cyclodextrin/chitosan nanoparticles showed preferable capability in improving the small intestinal absorption and inhibiting the efflux of DTX. In pharmacokinetics study, the DTX/sulfobutylether-β-cyclodextrin/chitosan nanoparticles increased the AUC0→t and decreased the clearance significantly, and the oral relative bioavailability of the DTX/sulfobutylether-β-cyclodextrin/chitosan nanoparticles was as high as 1447.53% compared to the pure DTX formulation. The DTX/sulfobutylether-β-cyclodextrin/chitosan nanoparticles prepared in this study have a good prospect for oral administration as an alternative of current DTX formulations.  相似文献   

11.
Objective: The aim of the present investigation was to investigate the efficacy of solid lipid nanoparticles (SLNs) to enhance the absorption and bioavailability of lurasidone hydrochloride (LH) following oral administration.

Methods: The LH loaded SLNs (LH-SLNs) were prepared by high pressure homogenization (HPH) method, optimized using box Behnken design and evaluated for particle size (PS), entrapment efficiency (EE), morphology, FTIR, DSC, XRD, in vitro release, ex vivo permeation, transport studies across Caco-2 cell line and in vivo pharmacokinetic and pharmacodynamic studies.

Results: The LH-SLNs had PS of 139.8?±?5.5?nm, EE of 79.10?±?2.50% and zeta potential of ?30.8?±?3.5?mV. TEM images showed that LH-SLNs had a uniform size distribution and spherical shape. The in vitro release from LH-SLNs followed the Higuchi model. The ex vivo permeability study demonstrated enhanced drug permeation from LH-SLNs (>90%) through rat intestine as compared to LH-suspension. The SLNs were found to be taken up by energy dependent, endocytic mechanism which was mediated by clathrin/caveolae-mediated endocytosis across Caco-2 cell line. The pharmacokinetic results showed that oral bioavailability of LH was improved over 5.16-fold after incorporation into SLNs as compared to LH-suspension. The pharmacodynamic study proved the antipsychotic potential of LH-SLNs in the treatment of schizophrenia.

Conclusion: It was concluded that oral administration of LH-SLNs in rats improved the bioavailability of LH via lymphatic uptake along with improved therapeutic effect in MK-801 induced schizophrenia model in rats.  相似文献   

12.
Abstract

Different nanoparticles, namely solid lipid nanoparticles, nanocrystals and nanosponges loaded with atorvastatin were successfully fabricated with desirable technological properties which reckoned promising methods of their preparation. Further, suitable characterization and evaluation parameters for in-vitro and in-vivo studies were conducted which led to increase in drug’s bioavailability, provided better in-vivo efficacy and reduced toxicity in treating hyperlipidemia systemically. Particle sizes were found to be less than 300?nm with minimal polydispersity indices and maximized entrapment efficiency which are pre-requisites for their absorption in intestines. Drug release studies showed sustained release for a prolonged period, which was justified by release kinetics. Augmented bioavailability and reduced lipoprotein levels were key observations. In addition, reduced hepatotoxicty, decreased myotoxicity and diminished drug distribution were also the important highlights of these developed nanosystems as compared with the pure drug and marketed formulation. Histopathology of liver confirmed reduced hepatotoxicity. An elaborate comparison of these nanoparticles along with pure drug and marketed formulation concluded that nanosponges are potentially one of the best nanosystems for treating hyperlipidemia by systemic delivery.  相似文献   

13.
Abstract

Objective: Complexation was investigated as an approach to enhance the entrapment of the cationic neurotherapeutic drug, galantamine hydrobromide (GH) into cationic chitosan nanoparticles (CS-NPs) for Alzheimer’s disease management intranasally. Biodegradable CS-NPs were selected due to their low production cost and simple preparation. The effects of complexation on CS-NPs physicochemical properties and uptake in rat brain were examined.

Methods: Placebo CS-NPs were prepared by ionic gelation, and the parameters affecting their physicochemical properties were screened. The complex formed between GH and chitosan was detected by the FT-IR study. GH/chitosan complex nanoparticles (GH-CX-NPs) were prepared by ionic gelation, and characterized in terms of particle size, zeta potential, entrapment efficiency, in vitro release and stability for 4 and 25?°C for 3 months. Both placebo CS-NPs and GH-CX-NPs were visualized by transmission electron microscopy. Rhodamine-labeled GH-CX-NPs were prepared, administered to male Wistar rats intranasally, and their delivery to different brain regions was detected 1?h after administration using fluorescence microscopy and software-aided image processing.

Results: Optimized placebo CS-NPs and GH-CX-NPs had a diameter 182 and 190?nm, and a zeta potential of +40.4 and +31.6?mV, respectively. GH encapsulation efficiency and loading capacity were 23.34 and 9.86%, respectively. GH/chitosan complexation prolonged GH release (58.07%?±?6.67 after 72?h), improved formulation stability at 4?°C in terms of drug leakage and particle size, and showed insignificant effects on the physicochemical properties of the optimized placebo CS-NPs (p?>?0.05). Rhodamine-labeled GH-CX-NPs were detected in the olfactory bulb, hippocampus, orbitofrontal and parietal cortices.

Conclusion: Complexation is a promising approach to enhance the entrapment of cationic GH into the CS-NPs. It has insignificant effect on the physicochemical properties of CS-NPs. GH-CX-NPs were successfully delivered to different brain regions shortly after intranasal administration suggesting their potential as a delivery system for Alzheimer’s disease management.  相似文献   

14.
Objective: The purpose of this research was the development, in vitro, ex vivo and in vivo characterization of lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan.

Methods: Insulin nanoparticles were prepared from methylated N-(4-N,N-dimethylaminobenzyl), methylated N-(4 pyridinyl) and methylated N-(benzyl). Insulin nanoparticles containing non-modified chitosan and also trimethyl chiotsan (TMC) were also prepared as control. The effects of the freeze-drying process on physico-chemical properties of nanoparticles were investigated. The release of insulin from the nanoparticles was studied in vitro. The mechanism of the release of insulin from different types of nanoparticles was determined using curve fitting. The secondary structure of the insulin released from the nanoparticles was analyzed using circular dichroism and the cell cytotoxicity of nanoparticles on a Caco-2 cell line was determined. Ex vivo studies were performed on excised rat jejunum using Frantz diffusion cells. In vivo studies were performed on diabetic male Wistar rats and blood glucose level and insulin serum concentration were determined.

Results: Optimized nanoparticles with proper physico-chemical properties were obtained. The lyophilization process was found to cause a decrease in zeta potential and an increase in PdI as well as and a decrease in entrapment efficiency (EE%) and loading efficiency (LE%) but conservation in size of nanoparticles. Atomic force microscopy (AFM) images showed non-aggregated, stable and spherical to sub-spherical nanoparticles. The in vitro release study revealed higher release rates for lyophilized compared to non-lyophilized nanoparticles. Cytotoxicity studies on Caco-2 cells revealed no significant cytotoxicity for prepared nanoparticles after 3-h post-incubation but did show the concentration-dependent cytotoxicity after 24?h. The percentage of cumulative insulin determined from ex vivo studies was significantly higher in nanoparticles prepared from quaternized aromatic derivatives of chitosan. In vivo data showed significantly higher insulin intestinal absorption in nanoparticles prepared from methylated N-(4-N, N-dimethylaminobenzyl) chitosan nanoparticles compared to trimethyl chitosan.

Conclusion: These data obtained demonstrated that as the result of optimized physico-chemical properties, drug release rate, cytotoxicity profile, ex vivo permeation enhancement and increased in vivo absorption, nanoparticles prepared from N-aryl derivatives of chitosan can be considered as valuable method for the oral delivery of insulin.  相似文献   

15.
Abstract

Context: Mucoadhesive nanoparticles were compared with non-aggregated constituent polymers for effect on pre-corneal residence of dexamethasone phosphate (DP) or met-enkephalin (ME), administered by eye-drops to rabbits.

Objective: Deepening the knowledge of ophthalmic nanoparticulate systems in terms of ability to prolong pre-corneal residence.

Materials and methods: Medicated nanoparticles resulted from gelation of quaternary ammonium–chitosan conjugate or its thiolated derivative with hyaluronan in the presence of drug. Particles were analyzed by light scattering. Dialysis removed non-encapsulated drug, dynamic dialysis measured drug–polymer interactions, and lyophilization-stabilized product. Dispersions were regenerated from lyophilized products. Also solutions of non-thiolated or thiolated chitosan derivative were administered. Mean drug residence time (MRT) in tears was determined by collecting samples from lower marginal tear strip of albino rabbits using capillaries.

Results and discussion: Nanoparticle size of regenerated dispersions was 400–430?nm (DP-systems), 360–370?nm (ME-systems); the drug content was 2.5?mg/mL (DP) or 0.3?mg/mL (ME). The MRT for DP nanoparticles from non-thiolated derivative was higher than that for non-aggregated polymer, due to stronger concurrent interactions of positively charged nanoparticles with ocular surface and drug. Thiolated polymer nanoparticles and non-aggregated parent polymer, both interacting weakly with DP, showed similar MRT values. The MRT of ME could only be enhanced by protecting drug from enzymatic hydrolysis. This was done by nanoparticle systems, whereas non-aggregated polymers were ineffective.

Conclusion: Developing a nanoparticle system rather than a solution of mucoadhesive polymer, for prolonging pre-corneal residence, is convenient, provided nanoparticles interact strongly with both ocular surface and drug, or protect drug from metabolic degradation.  相似文献   

16.
Objective: In order to characterize the pharmacokinetics, tissue distribution, bioavailability, and excretion of nuciferine, a reliable gradient LC/MS/MS-based method was developed and validated.

Methods: Sprague-Dawley rats were intravenously injected with a bolus of nuciferine (0.2?mg/kg) and orally given a single dose of nuciferine (10.0?mg/kg). Blood samples were withdrawn via the ocular vein at specific times. Organs, including the liver, kidney, brain, lung, heart, and spleen, were collected at specific times after oral administration of 10.0?mg/kg nuciferine. The plasma and tissue samples were assayed by LC/MS/MS.

Results: The results indicated that nuciferine had rapid distribution and poor absorption into systemic circulation. The value of absolute bioavailability was only 1.9?±?0.8% after administration of 10.0?mg/kg nuciferine by oral and administration of 0.2?mg/kg nuciferine intravenously (IV) to rats. The AUC0→4?h values in tissues were in the order of kidney?>?lung?>?spleen?>?liver?>?brain?>?heart. The majority of excretion of nuciferine (50.7%) was excreted through kidneys with parent drug after oral administration without liver metabolism.

Conclusion: This study may provide a meaningful basis for clinical application of such a bioactive compound of herbal medicines.  相似文献   

17.
Context: Neurotoxin (NT), an analgesic peptide which was separated from the venom of Naja naja atra, is endowed an exceptional specificity of action that blocks transmission of the nerve impulse by binding to the acetylcholine receptor in the membrane. However, it has limited permeability across the blood-brain barrier (BBB).

Objective: The purpose of this study was to encapsulate NT within polylactic acid (PLA) nanoparticles (NPs) modified with chitosan (NT-PLA-cNPs) and to evaluate their brain pharmacokinetic behaviors after intranasal (i.n.) administration using a microdialysis technique in free-moving rats.

Methods: NT-PLA-cNPs (NT labeled with fluorescein isothiocyanate) were prepared and characterized. Then, NT-PLA-cNPs were i.n. administered to rats and the fluorescence intensity in the periaqueductal gray (PAG) was monitored for up to 480?min, with NT-PLA-NPs and NT solution as control groups.

Results: The NPs prepared were spherical with a homogenous size distribution. The mean particle size, zeta potential, and entrapment efficiency were 140.5?±?5.4?nm, +33.71?±?3.24 mV, and 83.51?±?2.65%, respectively. The brain transport results showed that Tmax of NT-PLA-cNPs was equal with that of NT-PLA-NPs after i.n. administration (150?min). The Cmax and AUC0–8 h of each group followed the following order: NT-PLA-cNPs > NT-PLA-NPs. The corresponding absolute bioavailability (Fabs) of NT-PLA-cNPs was about 151% with NT-PLA-NPs as reference preparations.

Conclusion: These results suggest that NPs modified with chitosan have better brain targeting efficiency and are a promising approach for i.n. delivery of large hydrophilic peptides and proteins in improving the treatment of central nervous system (CNS) disorders.  相似文献   

18.
Abstract

The aim of this work was to formulate chitosan (CS)-based nanoparticles (NPs) loaded with ketorolac tromethamine (KT) intended for topical ocular delivery. NPs were prepared using ionic gelation method incorporating tri-polyphosphate (TPP) as cross-linker. Following the preparation, the composition of the system was optimized in terms of their particle size, zeta potential, entrapment efficiency (EE) and morphology, as well as performing structural characterization studies using Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The data suggested that the size of the NPs was affected by CS/TPP ratio where the diameter of the NPs ranged from 108.0?±?2.4?nm to 257.2?±?18.6?nm. A correlation between drug EE and the corresponding drug concentration added to the formulation was observed, where the EE of the NPs increased with increasing drug concentration, for up to 10?mg/mL. FT-IR and DSC revealed that KT was dispersed within the NPs where the phosphate groups of TPP were associated with the ammonium groups of CS. The in vitro release profile of KT from CS NPs showed significant differences (p?<?0.05) compared to KT solution. Furthermore, mucoadhesion studies revealed adhesive properties of the formulated NPs. The KT-loaded NPs were found to be stable when stored at different storage conditions for a period of 3 months. The ex vivo corneal permeation studies performed on excised porcine eye balls confirmed the ability of NPs in retaining the drug on the eye surface for a relatively longer time. These results demonstrate the potential of CS-based NPs for the ocular delivery of KT.  相似文献   

19.
Abstract

Objective: Curcumin, the golden spice from Indian saffron, has shown chemoprotective action against many types of cancer including breast cancer. However, poor oral bioavailability is the major hurdle in its clinical application. In the recent years, self-nanoemulsifying drug delivery system (SNEDDS) has emerged as a promising tool to improve the oral absorption and enhancing the bioavailability of poorly water-soluble drugs. In this context, complexation with lipid carriers like phospholipid has also shown the tremendous potential to improve the solubility and therapeutic efficacy of certain drugs with poor oral bioavailability.

Methods: In the present investigation, a systematic combination of both the approaches is utilized to prepare the phospholipid complex of curcumin and facilitate its incorporation into SNEDDS. The combined use of both the approaches has been explored for the first time to enhance the oral bioavailability and in turn increase the anticancer activity of curcumin.

Results: As evident from the pharmacokinetic studies and in situ single pass intestinal perfusion studies in Sprague–Dawley rats, the optimized SNEDDS of curcumin–phospholipid complex has shown enhanced oral absorption and bioavailability of curcumin. The cytotoxicity study in metastatic breast carcinoma cell line has shown the enhancement of cytotoxic action by 38.7%. The primary tumor growth reduction by 58.9% as compared with the control group in 4T1 tumor-bearing BALB/c mice further supported the theory of enhancement of anticancer activity of curcumin in SNEDDS.

Conclusion: The developed formulation can be a potential and safe carrier for the oral delivery of curcumin.  相似文献   

20.
Objective: A novel flurbiprofen-loaded nanoemulsion which gave uniform emulsion droplets with a narrow size distribution was previously reported to be prepared using membrane emulsification method. The purpose of this study is to develop a novel flurbiprofen-loaded nanoparticle with a narrow size distribution and improved bioavailability.

Method: The nanoparticle was prepared by solidifying nanoemulsion using sucrose as a carrier via spray drying method. Its physicochemical properties were investigated using SEM, DSC and PXRD. Furthermore, dissolution and bioavailability in rats were evaluated compared to a flurbiprofen-loaded commercial product.

Results: The flurbiprofen-loaded nanoparticles with flurbiprofen/sucrose/surfactant mixture (1/20/2, weight ratio) gave good solidification and no stickiness. They associated with about 70?000-fold improved drug solubility and had a mean size of about 300 nm with a narrow size distribution. Flurbiprofen was present in a changed amorphous state in these nanoparticles. Moreover, the nanoparticles gave significantly shorter Tmax, and higher AUC and Cmax of the drug compared to the commercial product (p?0.05). In particular, they showed about nine-fold higher AUC of the drug than did the commercial product

Conclusion: These flurbiprofen-loaded nanoparticles prepared with sucrose by the membrane emulsification and spray drying method would be a potential candidate for orally delivering poorly water-soluble flurbiprofen with enhanced bioavailability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号